130 likes | 253 Views
This guide provides strategies for solving exponential and logarithmic equations effectively. It covers the properties of exponents and logarithms, emphasizing how to solve equations by equating exponents or taking logarithms when necessary. It includes multiple examples for clarity, such as solving 4^(3x) = 8^(x+1) and using logarithmic properties like log_b(x) = log_b(y) to find solutions. The importance of checking solutions for extraneous results is also highlighted. This resource is ideal for students seeking to strengthen their understanding of exponential and logarithmic functions.
E N D
Exponential Equations • One way to solve exponential equations is to use the property that if 2 powers w/ the same base are equal, then their exponents are equal. • For b>0 & b≠1 if bx = by, then x=y
Solve by equating exponents • 43x = 8x+1 • (22)3x = (23)x+1 rewrite w/ same base • 26x = 23x+3 • 6x = 3x+3 • x = 1 Check → 43*1 = 81+1 64 = 64
Your turn! • 24x = 32x-1 • 24x = (25)x-1 • 4x = 5x-5 • 5 = x Be sure to check your answer!!!
When you can’t rewrite using the same base, you can solve by taking a log or ln of both sides • 2x = 7 • log22x = log27 • x = log27 • x = ≈ 2.807
4x = 15 • log44x = log415 • x = log415 = log15/log4 • ≈ 1.95 Using Log Using LN
102x-3+4 = 21 • -4 -4 • 102x-3 = 17 • log10102x-3 = log1017 • 2x-3 = log 17 • 2x = 3 + log17 • x = ½(3 + log17) • ≈ 2.115
Solving an Exponential Equation containing e • 40e0.6x-3= 237
Solving Log Equations • To solve use the property for logs w/ the same base use the one-to one property: • If logbx = logby, then x = y
log3(5x-1) = log3(x+7) • 5x – 1 = x + 7 • 5x = x + 8 • 4x = 8 • x = 2 and check • log3(5*2-1) = log3(2+7) • log39 = log39
log5(3x + 1) = 2 Write in exponential form then solve! • 3x+1 = 25 x = 8 and check • Because the domain of log functions doesn’t include all reals, you should check for extraneous solutions
log5x + log(x+1)=2 • log (5x)(x+1) = 2 (product property) • log (5x2 – 5x) = 2 • 5x2 - 5x = 100 • x2 – x - 20 = 0 (subtract 100 and divide by 5) • (x-5)(x+4) = 0 x=5, x=-4 • graph and you’ll see 5=x is the only solution