slide1 n.
Download
Skip this Video
Download Presentation
Large-Scale Scientific Computing 1946-2006 John G. Zabolitzky

Loading in 2 Seconds...

play fullscreen
1 / 32

Large-Scale Scientific Computing 1946-2006 John G. Zabolitzky - PowerPoint PPT Presentation


  • 112 Views
  • Uploaded on

Large-Scale Scientific Computing 1946-2006 John G. Zabolitzky. Segments of Computation. 1. Scientific ↔ Commercial ↔ Consumer ↔ Embedded

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Large-Scale Scientific Computing 1946-2006 John G. Zabolitzky' - tekla


Download Now An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

Large-Scale Scientific Computing 1946-2006John G. Zabolitzky

Eine Zeitreise in die Welt der Computer.

segments of computation
Segments of Computation
  • 1. Scientific ↔ Commercial↔ Consumer↔ Embedded
  • Solution of technical/scientific problems like weather, fluid dynamics, nuclear reactor simulation (usually involving many complicated operations on real floating-point numbers) as opposed to commercial problems like accounting, inventory, banking (usually involving characters and few, simple operations on fixed-point numbers). Not considering consumer applications like music, movies, games; web-servers; dishwashers, coffeemakers, automotive.
  • 2. Large-Scale ↔ Small/Medium-Scale
  • Looking at the largest problems which can be treated in the current year. Not looking at small-scale, e.g. laboratory-automation, student paper, or small research problem. (M$ problems, not k$ problems)
  • 3. Mainstream ↔ Experimental, Unique, small market share machines
  • Machines which have had a major influence on science/technology in general on a broad scale.
  • 4. What is a Computer ?
  • Stored program (not fixed, not external) electronic (not electromechanical) computer

Eine Zeitreise in die Welt der Computer.

first 30 years time line 1946 1975 scalar von neumann computing
First 30 Years: Time line 1946-1975: Scalar ("von Neumann") Computing
  • 1946 Zuse(electromechanical), ENIAC(wired program), Whirlwind .... early attempts
  • 1950 ERA 1101 (Atlas 1)
  • 1953 ERA 1103 (Atlas 2) IBM 701 "defense calculator"
  • 1857 IBM 709
  • 1959 CDC 1604
  • 1960 IBM 7090 = 709t
  • 1962 IBM 7094
  • 1963 CDC 3600
  • 1964 CDC 6600
  • 1965 IBM /360 family
  • 1969 CDC 7600
  • 1971 IBM /360-195

Eine Zeitreise in die Welt der Computer.

era 1101 1950
ERA 1101 (1950)

Vacuum Tubes

2 Registers (A(48), Q(24))

24 bit binary parallel

Drum memory 16k words

4.400 add/mul/sec

1-arithmetic section

2-power supply

3-control section

4-maintenance section

5-memory, electronic section

6-memory, drum section

7-heat transfer unit

8,9- control, paper tape reader/punch

Eine Zeitreise in die Welt der Computer.

era 1103 1953
ERA 1103 (1953)

Vacuum Tubes

2 Registers (A(72), Q(36))

36 bit binary parallel

Williams tube memory 1k words (CRT tube memory)

Drum memory 16k words

4.400 add/mul/sec

Eine Zeitreise in die Welt der Computer.

ibm 701 defense calculator 1953
IBM 701 ("defense calculator") (1953)

Vacuum Tubes

2 Registers (A(38), Q(36))

36 bit binary parallel

Williams tube memory 2k words (CRT tube memory)

Drum memory 8k words

4.000 add/mul/sec

Eine Zeitreise in die Welt der Computer.

ibm 709 1957
IBM 709 (1957)

Vacuum Tubes

5 Registers (A(38), Q(36), 3 index)

36 bit binary parallel

magnetic core memory 4/8/32k words

Drum memory 8/16k words

5.500 add/mul/sec

Eine Zeitreise in die Welt der Computer.

cdc 1604 1959
CDC 1604 (1959)

discrete Transistor

8 Registers (A(96), Q(48), 6 index)

48 bit binary parallel

magnetic core memory 32k words

40k add/mul/sec

Eine Zeitreise in die Welt der Computer.

ibm 7090 1960
IBM 7090 (1960)

discrete Transistor

5 Registers (A(38), Q(36), 3 index)

36 bit binary parallel

magnetic core memory 32k words

40k add/mul/sec

Eine Zeitreise in die Welt der Computer.

ibm 7094 1962
IBM 7094 (1962)

discrete Transistor

9 Registers (A(38), Q(36), 7 index)

36 bit binary parallel

magnetic core memory 32k words

80k add/mul/sec

Eine Zeitreise in die Welt der Computer.

cdc 6600 1964
CDC 6600 (1964)

discrete Transistor

32 Registers (8 X, 8 A, 8B, 8 instruction stack)

60 bit binary parallel

magnetic core memory 128k words

1 MFLOPS

first fluid cooled

Eine Zeitreise in die Welt der Computer.

slide12

CDC 6600

10 core modules

- each 6 kByte

- 130 modules total

2 logic frames

Eine Zeitreise in die Welt der Computer.

slide13

discrete wire mat

vector graphic console

Eine Zeitreise in die Welt der Computer.

slide14

"Last week Control Data ... announced the 6600 system. I understand that in the laboratory developing the system there are only 34 people including the janitor. Of these, 14 are engineers and 4 are programmers ... Constrasting this modest effort with our vast development activities, I fail to understand why we have lost our industry leadership position by letting someone else offer the world's most powerful computer."

-- Thomas Watson, CEO of IBM, 1964

"It seems like Mr. Watson has answered his own question."

-- Seymour Cray, Control Data Corporation

Eine Zeitreise in die Welt der Computer.

cdc 7600 1969
CDC 7600 (1969)
  • The 7600 has similar hardware stucture like the 6600 (discrete transistor), with some improvements:
  • - 12 word instruction stack (was 8 word), total of 36 "registers"
  • - 275 nsec small core memory cycle time (64kW, was 1000 nsec 128 kW), large core 512 kW
  • - 36 MHz clock (was 10 MHz)
  • - more consequently pipelined functional units
  • - faster peripheral prcoessors

Eine Zeitreise in die Welt der Computer.

ibm 360 195 1971
IBM /360 - 195 (1971)

integrated circuit

20 Registers (16 GP, 4 FP)

32/64 bit binary parallel

magnetic core memory 1Mword max 756 nsec

silicon cache 32 kByte 54 nsec (4 kword)

model 195:

hidden registers in CPU

to overcome /360 limitations

Eine Zeitreise in die Welt der Computer.

slide18

Compiled by Erich Strohmaier

Eine Zeitreise in die Welt der Computer.

second 30 years time line 1976 2006 vector and parallel computing
Second 30 Years: Time line 1976-2006: Vector and Parallel Computing
  • 1976 Cray-1 first successful vector computer (~ 50 MFLOPS)
  • 1982 Cray X-MP first multiple-processor shared-memory vector computer
  • 1985 Cray-2 large memory (256 MW = 2 GByte)
  • 1888 Cray Y-MP first to break 1 GFLOPS barrier
  • 1993 Cray T3D first successful massively parallel machine, 3D-Torus
  • 16 x 1 GFLOPS < 512 x 0.150 = 76 GFLOPS
  • 1995 Cray T3E most widely sold MPP machine; break 1 TFLOPS barrier
  • ~1700 x 1.2 GFLOPS = 2 TFLOPS
  • 2004 IBM Blue Gene/L world performance leader (development started 1999)
  • IBM today has dominant market share (> 50%)
  • leadership recovered after 40 years of CDC/Cray dominance
  • same interconnect structure as Cray T3D/T3E (3D-Torus)
  • 2006 lowest-power processors (64k x 5 GFLOPS = 320 TFLOPS)

Eine Zeitreise in die Welt der Computer.

slide20

Seymour Cray

Cray-1

1976

Single Processor

80/160 MFLOPS peak

1 Mword = 8 Mbyte

Photograph courtesy of Charles Babbage Institute, University of Minnesota, Minneapolis

Eine Zeitreise in die Welt der Computer.

slide21

MUCH larger working set:

- 8 vector registers, 64 words

- 8 scalar registers

- 8 address registers

- large instruction buffer

Performance Features:

- vector processing: one operation affects 64 vector elements, streamed through functional unit

- small vector startup time

- chaining between vector ops

- large, fast semiconductor memory

- requires vectorization effort

Eine Zeitreise in die Welt der Computer.

slide22

Cray X-MP

1982

4 processors

800 MFLOPS

16 Mword =

128 MByte

Eine Zeitreise in die Welt der Computer.

slide23

Cray-2

1985

4 processors

1200 MFLOPS

256 Mword =

2 GByte

Eine Zeitreise in die Welt der Computer.

slide24

Minnesota

Supercomputer

Center

Minneapolis

1986

CDC Cyber 205

Cray-2 (4)

Cray-2 (1)

Eine Zeitreise in die Welt der Computer.

slide25

Cray Y-MP

1988 +

8/16 processors

1-16 GFLOPS

16M-1Gword =

128M-8GByte

Eine Zeitreise in die Welt der Computer.

slide26

Cray T3D (1993)

First widely successful massively parallel system

512 x 0.15 MFLOPS = 76 GFLOPS

4 Gword = 32 Gbyte distributed memory

3D Torus interconnect

MPP requires massive software effort

Eine Zeitreise in die Welt der Computer.

slide27

Cray T3E (1995)

Most successful massively parallel system in the 1990s

2048 x 1200 MFLOPS = 2.4 TFLOPS max.(8 cabinets)

64 Gword = 256 Gbyte distributed memory (large end of config.)

3D Torus interconnect

3 cabinets = 768 processors

Eine Zeitreise in die Welt der Computer.

slide28

Cache not always useful Latency, congestion not discussed here

Eine Zeitreise in die Welt der Computer.

slide29

From: Thomas Lippert, FZJ

Eine Zeitreise in die Welt der Computer.

slide30

From: Thomas Lippert, FZJ

Eine Zeitreise in die Welt der Computer.

slide31

From: Thomas Lippert, FZJ;1 MW ~ 1 M€/year !!

Eine Zeitreise in die Welt der Computer.

slide32

After 40 years (1964 - 2004) of CDC - Cray (vector) dominance IBM has regained the market leadership.Low-power technology is the key to success:- high density → fast communication- low utility cost, low building costScalar → Vector→ Parallel: increasing burden on programmer to obtain performance/efficiency

Eine Zeitreise in die Welt der Computer.