1 / 20

200 likes | 313 Views

Physics 211 . 12: Oscillatory Motion. Simple Harmonic Motion Energy of a Simple Harmonic Oscillator The Pendulum Comparing Simple Harmonic Motion and Uniform Circular Motion Damped Oscillations Forced Oscillations. Simple Harmonic Motion. Hookes Law F = -kx F = restoring force

Download Presentation
## Physics 211

**An Image/Link below is provided (as is) to download presentation**
Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.
Content is provided to you AS IS for your information and personal use only.
Download presentation by click this link.
While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.
During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

**Physics 211**12: Oscillatory Motion • Simple Harmonic Motion • Energy of a Simple Harmonic Oscillator • The Pendulum • Comparing Simple Harmonic Motion and Uniform Circular Motion • Damped Oscillations • Forced Oscillations**Simple Harmonic Motion**Hookes Law F = -kx F = restoring force x = displacement from equilibrium position**x=-A**x=0 X=A**2**d x ( ) ( ) ( ) F t = - kx t = ma t = m dt 2 2 d x k Û = - x dt m 2 Differential Equation, need to find solution so that left hand side = right hand side From looking at graph of position versus time ( ) Guess : x t = A cos( w t ) ; A and w constants .**What is the meaning of the constant A**at time t = 0 ( ) ( ) x 0 = A cos 0 = A which is the displacement from equilibrium at time t = 0 p at time t = w p p æ æ ö ö ( ) x = A cos w = A cos p = - A è ø è ø w w The max and min values of x are ± A Û A is the amplitude of the motion the maximum displacement from equilibrium position**cos(x)**+1 cos(2n) = +1 -1 cos([2n+1]) = -1**Meaning of**w 2 n p for t = Þ x = + A w ( ) 2 n + 1 p for t = Þ x = - A w motion repeats between ± A Harmonic Motion If it repeats itself exactly Simple Harmonic Motion (SHM) ( ) ( ) 2 n + 2 p 2 n p 2 p angle changes Time between repeats = - = ( 2 p ) w w w This is called the Period of the Oscillation, T Angular Frequency Rate of change of angle with time = 2 p w = = T**The number of times motion repeats in**1 second 1 w is the frequency f = = T 2 p rad [ ] [ ] f = Hz º cps; w = º s - 1 s 2 p m T = = 2 p w k When is the velocity the greatest/least When is the acceleration the greatest/least**(**) 2 n p 2 n + 1 p x = ± A Û t = ; t = w w ( ) ( ) at these times the velocity v t = - A w sin w t Þ 2 n p 2 n p æ æ ö ö ( ) v = - A sin w = - A sin 2 n p = 0 è ø è ø w w ( ) ( ) æ 2 n + 1 p æ 2 n + 1 p ö ö ( ) ( ) v = - A sin w = - A sin 2 n + 1 p = 0 è ø è ø w w so velocity is zero at maximum displacement the acceleration on the other hand is a maximum ( ) 2 n p æ 2 n + 1 p æ ö ö a = - w A ; a = w A 2 2 è ø è ø w w The acceleration is zero when x = 0 The velocity is the greatest when x = 0 v = ± A w max**Energy of a Simple Harmonic Oscillator**Mass experiences spring force, thus its P . E is 1 U ( x ) = kx 2 2 The spring force is a conservative force The total energy of the mass is 1 1 1 1 ( ) 2 ( ) 2 E = K + U = m v + kx = m v t + kx t = constant 2 2 2 2 2 2 tot \ The total energy when v = 0 is equal to 1 E = kA 2 2 tot which must be its value at ALL TIMES ! 1 1 1 ( ) Þ E t = m v + kx = kA 2 2 2 2 2 2 tot 1 1 k Þ when x = 0 , K = m v = kA Þ v = A 2 2 max max 2 2 m**The Pendulum** l T s mg cos mg sin W=mg**Restoring Force**-mg when q F = - mg sin q » q is small s mg \ F = - mg q = - mg = - s l l º Hookes Law for the Pendulum 2 d s , This force provides the tangential acceleration 2 dt and we obtain a similar differential equation to before . Comparing to before we see mg k « & x « s l ( ) ( ) s t = A cos w t m ml l T = 2 p = 2 p = 2 p k mg g**The Physical Pendulum**d d x W W=mg Note that the pivot point could be inside the boundaries of the object**We formulate this for an objectsuspended so that its center**of gravity is at a distance d from the pivot point, by using angular quantities: The restoring torque due to gravity t = - mgd sin q » - mgd q (small angle approx . ) using t I a = 2 d q mgd mgd 2 Þ a = = - q = - w q , where w = 2 dt I I ( ) ( ) Þ q t = A cos w t I Þ T = 2 p mgd**The Torsion Pendulum**By suspending a mass at the end of a wire supported tightly at the other end, we make a torsion pendulum. By twisting the object through a small angle we produce a restoring torque d q 2 t = - kq = I a = I dt 2 2 d q k Þ = - q dt I 2 I T = 2 p k**Comparing Simple Harmonic Motion and Uniform Circular Motion**( ) ( ) x t = A cos w t is precisely the time variation of the x coordinate of a particle performing uniform circular motion about a fixed point at a fixed distance A . æ p ö ( ) ( ) y t = A sin w t = A cos w t - is the time variation è ø 2 of the y coordinate, which is a SHM variation . p Here though we have a phase shift of j = - 2 p The argument w t - is called the phase of the motion . 2**Damped Oscillations**If there are frictional forces present D E = W < 0 tot nc Thus the total energy decreases and becomes a non constant function of time, E ( t ) ¹ constant. 1 ( ) 2 Þ E ( t ) = kA t 2 ( ) Þ A t decreases with time The differential equation describing the position of a particle undergoing damped SHM is of the form d x dx 2 m = - kx - b dt dt 2**Forced Oscillations**If there is another external oscillating force acting on the object (in the direction of motion ) one says that the motion of the oscillator is forced by this external force. The differential equation describing such motion is d x dx 2 ( ) m = - kx - b + F cos w t dt dt 0 2**solutions to this equation give amplitudes of the form**F 0 m A ( t ) = } { ( ) 2 ( ) b w 2 w - w + 2 2 m 0 w is the frequency of the SHM (i . e . no friction 0 and forcing oscillation ) If b (friction ) is small, then if w » w the amplitude 0 becomes larger and larger º RESONANCE

More Related