1 / 22

Electrons

Electrons. Thermionic Emission Deflection of Electrons in Electric Field Deflection of Electrons in Magnetic Field Determination of e/m Cathode Ray Oscilloscope. Thermionic Emission (1).

Download Presentation

Electrons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Electrons Thermionic Emission Deflection of Electrons in Electric Field Deflection of Electrons in Magnetic Field Determination of e/m Cathode Ray Oscilloscope

  2. Thermionic Emission (1) • When a metal is heated sufficiently, its free electrons gain enough kinetic energy to leave the metal. This process is called thermionic emission.

  3. Thermionic Emission (2) • In practice, thermionic emission is caused by heating a filament of metal wire with an electric current.

  4. 1 electron-volt = J Thermionic Emission (3) • The work done on each electron from the filament is W = eV where V is the p.d. across the filament and the anode. • Electron-volt The electron-volt is an amount of energy equal to the work done on an electron moved through a p.d. of 1V.

  5. Properties of Electron Beams (Cathode rays) • Cathode rays travel in straight lines. • Cathode rays can cause fluorescence. • Cathode rays can be deflected by electric field and magnetic field. • Cathode rays may produce heat and X-rays. • Cathode rays can affect photographic plates.

  6. + d - Deflection of Electrons in a Uniform Electric Field (1) • Consider an electron beam directed between two oppositely charged parallel plates as shown below. • With a constant potential difference between the two deflecting plates, the trace is curved towards the positive plate.

  7. where E = electric field strength, V = p.d. between plates, d = plate spacing. p Deflection of Electrons in a Uniform Electric Field (2) • The force acting on each electron in the field is given by

  8. Deflection of Electrons in a Uniform Electric Field (3) • The vertical displacement y is given by This is the equation for a parabola.

  9. Deflection of Electrons in a Uniform Magnetic Field (1) • The force F acting on an electron in a uniform magnetic field is given by Since the magnetic force F is at right angles to the velocity direction, the electron moves round a circular path.

  10. Deflection of Electrons in a Uniform Magnetic Field (2) • The centripetal acceleration of the electrons is Hence which gives

  11. Determination of Specific Charge - e/m J. J. Thomson

  12. × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × Electron gun F=Bev v r Determination of Specific Charge Using a Fine Beam Tube (1) • The principle of the experiment is illustrated by the diagram below.

  13. (For an electron moving in a uniform magnetic field) Since Determination of Specific Charge Using a Fine Beam Tube (2) and the kinetic energy of the electron provided by the electron gun is Where V is the anode voltage.

  14. So C/kg Determination of Specific Charge Using a Fine Beam Tube (3) Rearrange the equation gives The value of the specific charge of an electron is now known accurately to be

  15. + × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × v - Thomson’s e/m Experiment (1) Thomson’s apparatus for measuring the ratio e/m

  16. Thomson’s e/m Experiment (2) • A beam of electron is produced by an electron gun with an accelerating voltage V. • The electron beam is arranged to travel through an electric field and a magnetic field which are perpendicular to each other. • The apparatus is set-up so that an electron from the gun is undeflected.

  17. eE v i.e. Bev On the other hand, Thomson’s e/m experiment (3) • As the electron from the gun is undeflected, this gives Combining the equations, we get

  18. Cathode Ray Oscilloscope (CRO) • The structure of the cathode ray tube

  19. Uses of CRO • An oscilloscope can be used as 1. an a.c. and d.c. voltmeter, 2. for time and frequency measurement, 3. as a display device.

  20. Lissajous’ Figures (1) • Lissajous’ figure can be displayed by applying two a.c. signals simultaneously to the X-plates and Y-plates of an oscilloscope. • As the frequency, amplitude and phase difference are altered, different patterns are seen on the screen of the CRO.

  21. Lissajous’ Figures (2) Same amplitude but different frequencies

  22. In phase π/2 π 3π/2 In phase π /4 3π/4 5π/4 7π/2 Lissajous’ Figures (3) Same frequency but different phase http://surendranath.tripod.com/Lissajous/Lissajous.html

More Related