1 / 28

電子・陽電子宇宙線と CTA

電子・陽電子宇宙線と CTA. 井岡 邦仁  (KEK). 共同研究者: 川中宣太 (KEK). PAMELA. Positron excess above the predicted secondary. ⇒ Primary sources - Dark matter? - Astrophysical? ⇒ Many papers >400. Positron Excess. Solar modulation. Expected Secondary. Jul 06 - Feb 08 151672 e-, 9430 e+.

tao
Download Presentation

電子・陽電子宇宙線と CTA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 電子・陽電子宇宙線とCTA 井岡 邦仁 (KEK) 共同研究者:川中宣太 (KEK)

  2. PAMELA Positron excess above the predicted secondary ⇒ Primary sources - Dark matter? - Astrophysical? ⇒ Many papers >400 Positron Excess Solar modulation Expected Secondary Jul 06 - Feb 08 151672 e-, 9430 e+ Adriani+ 08

  3. Cosmic-Ray Electron An Excess also in (e++e-) Spectrum ATIC/PPB-BETS Peak+Cutoff ~600GeV DM? Fermi Smooth E-3 No peak Aug 08 – Jan 09 4M e- Abdo+ 09

  4. HESS 有効面積大 5×104 m2 @1TeV ~8.5×107 m2 sr s (2004-2007) ◉Consistent with Fermi ◉No ATIC peak (but not rule out) ◉Steep at >1TeV Primary sources Aharonian+ 09

  5. CTA 視野・台数増 ⇒ 有効面積大 ⇒ より高エネルギー 注: シミュレーションでproton backgroundの評価 ⇒ E~15%不定性 ⇒ w/ LHCf ?

  6. Energetics r(proton) ~1eV/cm3 ~超新星残骸 r(electron) ~10-2eV/cm3 r(positron) ~10-3eV/cm3 ~ 0.1% of p 起源が不明 ガンマ線、電波 e-2.7 0903.1987

  7. e± cooling We are here Our galaxy e± lose energy (cool) via inverse Compton and synchroton Positron source d<~1kpc

  8. Dark Matter? Annihilation Decay e DM e DM DM c e Q ~ n2 Ecut ~ mDM <sv>~3x10-24cm3/s >3x10-26cm3/s boost factor ~100 Q ~ n Ecut ~ mDM/2 tdecay~1026sec (>H-1) 郡さんのトーク

  9. Astrophysical Origin? Heinz & Sunyaev 02 Pulsar SNR mQSO KI 08 GRB Shen & Berkey 68; Pohl & Esposito 98; Kobayashi+ 04; Shaviv+ 09; Hu+ 09; Fujita+KI 09; Blasi 09; Blasi & Serpico 09; Mertsch & Sarkar 09; Biermann+ 09 Shen 70; Aharonian+ 95; Atoyan et al. 95; Chi+ 96; Zhang & Cheng 01; Grimani 07; Yuksel+ 08; Buesching+ 08; Hooper+ 08; Profumo 08; Malyshev+ 09; Grasso+ 09 Kawanaka, KI & Nojiri 09; Cosmic-ray Nuclei energy 10-3 x 1050erg/SN ~ (1sec pulsar)/SN ~ 1050erg/103SN Propagation Delahaye+ 08; Cowsik & Burch 09 Proton Comtami. Fazely+ 09; Schubnell 09

  10. Simple model Power-law Spectrum Burst-like injection B Whatever emax is!

  11. e± Propagation Diffusion Injection Energy loss by IC & synchro. ← B/C ratio For a single burst with Power law spectrum Atoyan+ 95, Shen 70

  12. Positron We can fit the PAMELA data well d=1kpc (a) 0.9d50 erg 2d5 yr a=2.5 (b) Harder 0.8d50 erg 5.6d5 yr a=1.8 (c) Older 3d50 erg 3d6 yr a=1.8 KI 08

  13. Electron ATIC/PPB-BETS & Fermi/HESS d=1kpc (a) 0.9d50 erg 2d5 yr a=2.5 (b) Harder 0.8d50 erg 5.6d5 yr a=1.8 (c) Older 3d50 erg 3d6 yr a=1.8 KI 08

  14. DM-like Sharp Cutoff Due to cooling ATIC peak HESS cutoff Independent of initial emax KI 08

  15. Continuous injection Case 1:pulsar-type decay Case 2:exponential decay

  16. Injection History Cutoff width Decut CTA Dt~105yr e-t decay Cutoff width Dt~105yr t-2 decay Dt~104yr t-2 decay Kawanaka+ 09

  17. Nearby Young Sources CTA 現在見えているとは 限らない。t<104-5yr Kobayashi+ 04

  18. Discreteness @>TeV tcool~105yr @TeV tSN~105yr @<kpc 分散 CTA Kawanaka+ 09

  19. Single v.s. Multiple A single source ⇒ A relatively large anisotropy Challenging DM clump Fermi~6×106 erg sr s CTA~109 erg sr s KI 08; Mao & Shen 72

  20. Hadronicv.s. Leptonic Fujita, Kohri, Yamazaki, KI 09 Blasi+ 09 SNR model: pp →p→ e+,e- (w/ ISM/DC) Inevitably ⇒ anti-proton excess above ~100 GeV ⇒ AMS-02 Anti-proton fraction

  21. Moon Shadow e-, e+, g, anti-p Moon shadow の位置が異なる ⇒ 分離可能 CTA: 150GeV~3TeV detection<5hr 月の散乱光が background Colin+ 09

  22. 2nd Nuclei for Hadronic Hadronic models ⇒ Secondary Nuclei Excesses Boron-to-carbon ratio Titanium-to-iron ratio Z=22 Z=5 Mertsch and Sarkar 09

  23. Heavy Nuclei Z~7-40 with DZ/Z~5% for 10~1000TeV Fe balloon/space shower CTA PHYS-WP-heavy nuclei

  24. TeV Gamma-Ray Sky Source # ~100 1-10TeV e ⇒ IC ⇒ ~TeV g 観測から 電子ソース E>1048erg ~0.5 Crab @2kpc

  25. Confinement Time 閉じ込め~105yr N∝R2∝F-1 点源(カロリメトリック) ⇔ 柴田さん:diffuse Fmin(電子ソース) @20kpc

  26. Confinement Time N∝R2∝F-1 閉じ込め~104yr ~PSR J1826-1334 Diffusion coefficient などにもよる 閉じ込め中 エネルギーが 大きい場合

  27. Summary 電子・陽電子宇宙線の起源 Astrophysical? Dark Matter? 直接観測は今後進展 有効面積: CTA >> AMS-02, CALET ⇒ >TeV: Discreteness, Injection History 非等方性: Single or Multiple   pbar, Heavy: Hadronic or Leptonic TeV電子ソース ⇒ TeVガンマ線ソース 閉じ込め時間は短い? or DM? サーベイ、広がったソース

  28. PHYS-WP (CTA-Japan) • ◉ まずは、論文を書くとき • CTAについて議論◉ CTA-Japanは後発 • ◉ 長期的には組織的に • 力を合わせたほうがいい • ◉ アイデアが必要 • 論文を全員に回覧 • CTA-Japan Paperを • 重要なものに関しては書く • Task A, Bの日本版 • - …

More Related