1 / 20

Corso di PETROGRAFIA Laurea Triennale in Geologia

A.A. 2012-2013. Corso di PETROGRAFIA Laurea Triennale in Geologia. Angelo Peccerillo. tel: 075 5852608 e-mail: angelo.peccerillo@unipg.it home page: www.unipg.it/pecceang/. Lezione del 8 Novembre 2012. Metamorfismo progrado e metamorfismo retrogrado.

stuart
Download Presentation

Corso di PETROGRAFIA Laurea Triennale in Geologia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A.A. 2012-2013 Corso di PETROGRAFIA Laurea Triennale in Geologia Angelo Peccerillo tel: 075 5852608 e-mail: angelo.peccerillo@unipg.it home page: www.unipg.it/pecceang/ Lezione del 8 Novembre 2012

  2. Metamorfismo progrado e metamorfismo retrogrado Quando le rocce formatesi in condizioni superficiali vengono portate in profondità all'interno della Terra, esse vengono sottoposte a pressioni e temperature crescenti e si trasformano in rocce metamorfiche di grado sempre più elevato. Il metamorfismo che si realizza in condizioni di P e T crescenti, viene detto metamorfismo progrado. Tuttavia, una volta formate, molte rocce metamorfiche sono sottoposte a sollevamento, specialmente dopo la collisione continentale, e vengono portate verso la superficie (riesumazione metamorfica), dove le possiamo osservare in affioramento, dopo l'asportazione della copertura rocciosa da parte degli agenti erosivi. Nel corso del passaggio dalle condizioni di metamorfismo più o meno alto alla superficie terrestre, le rocce subiscono un decremento di P e T. I minerali e le strutture di alto grado metamorfico tendono a raggiungere l'equilibrio nelle decrescenti condizioni termobariche. Le trasformazioni mineralogiche e strutturali che si verificano durante il decremento di P-T prendono il nome di metamorfismo retrogrado (diaftoresi).

  3. Metamorfismo progrado e metamorfismo retrogrado Le reazioni che si realizzano durante il metamorfismo progrado sono generalmente più veloci di quelle del metamorfismo retrogrado. La differenza tra le cinetiche di reazione dipende essenzialmente dal fatto che nel metamorfismo progrado sono generalmente presenti abbondanti quantità di fluidi che accelerano le trasformazioni mineralogiche. I fluidivengono largamente persi nelle reazione che si verificano durante la risalita della temperatura e il successivo metamorfismo retrogrado si verifica in condizioni di bassa pressione di fluidi con conseguente rallentamento delle reazioni metamorfiche. Inoltre, il metamorfismo progrado procede generalmente per tempi più lunghi (di parecchi milioni o decine di milioni di anni) rispetto a quelli della riesumazione e del metamorfismo retrogrado. Ne deriva che pochi minerali di neoformazione si sviluppano dalle associazioni di alta P-T che sopravvivono in condizioni di disequilibrio. Pertanto, mentre le strutture e le composizioni mineralogiche di bassa P-T raramente sopravvivono al metamorfismo progrado, quelle di alto grado metamorfico si conservano quasi immutate durante il metamorfismo retrogrado. Ciò ci consente di trovare in superficie rocce metamorfiche formate a profondità di diecine o centinaia di km all'interno della Terra.

  4. Reazioni metamorfiche • Quando i minerali che compongono una roccia sono sottoposti ad alte pressioni e temperature, diventano instabili e si trasformano in altri minerali, più o meno per le stesse ragioni per cui un blocco di argilla si trasforma in mattone se messo a cuocere in una fornace. • I minerali che si formano durante l'aumento del metamorfismo sono diversi a seconda: • delle condizioni di metamorfismo (pressione, temperatura, fluidi - cioè del grado metamorfico) • della composizione chimico-mineralogica della roccia originaria (protolito). • Poiché lo spettro composizionale delle rocce ignee e sedimentarie è molto ampio e le condizioni di metamorfismo sono molto variabili, la composizione mineralogica delle rocce metamorfiche può essere estremamente variabile

  5. Reazioni metamorfiche Le reazioni metamorfiche avvengono in seguito a diversi meccanismi. In alcuni casi si ha una semplice trasformazione della struttura dei minerali che conservano la loro composizione chimica. Gli esempi più noti sono le trasformazioni: andalusite ↔ cianite ↔ sillimanite calcite ↔ aragonite Andalusite, cianite e sillimanite sono tre modificazioni strutturali (polimorfi) del composto Al2SiO5. Calcite e aragonite sono due polimorfi del composto CaCO3. Altre reazioni determinano una completa trasformazione mineralogica, sia con liberazione di fluidi che senza un ruolo di queste fasi. Esempi di queste due reazioni sono: muscovite + quarzo → sillimanite + K-feldspato + H2O albite → giadeite + quarzo

  6. Reazioni metamorfiche muscovite + quarzo → sillimanite + K-feldspato + H2O andalusite ↔ cianite ↔ sillimanite calcite ↔ aragonite albite → giadeite + quarzo

  7. Caratteristiche diagnostiche e paragenesi di alcuni minerali metamorfici

  8. Tipi di metamorfismo Burial

  9. Tipi di metamorfismo Metamorfismo termico (o di contatto) Il metamorfismo termico si realizza nelle rocce intorno alle intrusioni magmatiche; il fattore principale è costituito dalla temperatura. Le reazioni metamorfiche avvengono nelle rocce incassanti al contatto con le intrusioni (da cui anche la denominazione metamorfismo di contatto). Le rocce termometamorfiche, pertanto, formano delle aureole intorno ai corpi intrusivi. Le rocce più prossime all'intrusione sono interessate da metamorfismo di grado più alto rispetto alle rocce distali. Le rocce di metamorfismo di contatto vengono indicate con il termine di cornubianiti.

  10. Tipi di metamorfismo Metamorfismo termico (o di contatto)

  11. Tipi di metamorfismo Metamorfismo dinamotermico (o regionale) Il metamorfismo dinamotermico (detto anche metamorfismo regionale perché si sviluppa su zone molto estese) coincide con le fasce orogeniche. Le rocce metamorfiche sono diffuse lungo le catene montuose profondamente erose. Il ruolo delle pressioni orientate nel metamorfismo regionale è evidenziato dalla grande abbondanza di rocce con strutture anisotrope (scistose, gneissiche, etc.), anche se non mancano rocce con struttura isotropa (granoblastica). Queste si formano generalmente nella crosta profonda dove prevalgono le pressioni idrostatiche. I minerali presenti nelle rocce di metamorfismo regionale sono rappresentati da una grande varietà di tipi tra cui i più comuni sono le miche chiare, la clorite, sillimanite, granato, anfibolo, cianite, biotite.

  12. Metamorfismo regionale Tipi di metamorfismo Metamorfismo dinamotermico (o regionale)

  13. Metamorfismo di seppellimento Tipi di metamorfismo Metamorfismo di seppellimento Il metamorfismo di seppellimento si realizza al contatto tra zolle convergenti, specialmente nelle parti profonde delle serie sedimentarie delle fosse oceaniche. Esso è caratterizzato da pressioni elevate e da temperature abbastanza basse, dell’ordine di 200-350°C. Le pressioni sono sia di carico che deformative, per cui le strutture che si sviluppano sono di tipo orientato. Minerali indice di questo metamorfismo sono la giadeite e il glaucofane.

  14. Tipi di metamorfismo Metamorfismo di fondo oceanico Il metamorfismo di fondo oceanico interessa le rocce che costituiscono i fondi degli oceani. Esso è caratterizzato da pressioni sono molto basse, da temperature abbastanza elevate, legate al calore rilasciato dal mantello sottostante e dai magmi che risalgono lungo le zone di dorsale, e da un'elevata pressione di fluidi conseguente all'infiltrazione di acqua marina. L'intensa circolazione di fluidi acquosi produce importanti fenomeni di metasomatismo per cui le rocce di fondo oceanico subiscono un generale arricchimento in Na2O e CaO.

  15. Tipi di metamorfismo Metamorfismo dinamico o cataclastico Il metamorfismo dinamico o cataclastico si verifica in zone di grandi fratture crostali, all'interfaccia tra grandi blocchi rocciosi in movimento differenziale. L'energia liberata dall'attrito tra blocchi rocciosi genera intensa frantumazione dei minerali, incremento di temperatura ed estesa ricristallizzazione. Le strutture tipiche delle rocce cataclastiche sono fortemente anisotrope e sono caratterizzate da grossi cristalli fortemente fratturati, inclusi in una matrice di cristalli di minute dimensioni. Le rocce di metamorfismo dinamico sono le miloniti, cataclasiti e pseudotachiliti.

  16. I minerali metamorfici I minerali metamorfici sono costituiti da un gran numero di specie. Alcuni (es. quarzo, anfibolo, pirosseno, plagioclasio, etc.) si trovano anche in rocce ignee e sedimentarie. Altri sono molto abbondanti soltanto nelle rocce metamorfiche (es. muscovite, granato), pur essendo presenti anche in altri litotipi. Infine esistono minerali esclusivi del metamorfismo. Questi includono cloritoide, staurolite, cordierite, andalusite, cianite, sillimanite, vesuviana, wollastonite, etc. Alcuni minerali (es. glaucofane, albite, sillimanite, etc.) cristallizzano in campi di pressione e temperatura abbastanza ristretti; altri (es. quarzo, calcite) si formano in un ampio campo di condizioni metamorfiche. I minerali caratteristici di certe rocce metamorfiche sono detti minerali indice; la loro comparsa nei terreni metamorfici segna la transizione da una zona metamorfica ad un'altra, indicando la transizione verso un diverso di metamorfismo. Il termine viene ora usato anche per indicare quei minerali che sono stabili in campi abbastanza ristretti di T-P e che possono fornire informazioni sul tipo e grado di metamorfismo.

More Related