slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Epidemic-Type Aftershock-Sequences (ETAS) model PowerPoint Presentation
Download Presentation
Epidemic-Type Aftershock-Sequences (ETAS) model

Loading in 2 Seconds...

play fullscreen
1 / 14

Epidemic-Type Aftershock-Sequences (ETAS) model - PowerPoint PPT Presentation


  • 150 Views
  • Uploaded on

Epidemic-Type Aftershock-Sequences (ETAS) model. 島內 30 公里以上規模大於 5 Change Interval 1.5 yrs Background Interval 4.5 yrs. 從臨界轉變的角度理解地震預測 技術 Theory of critical transitions helps understand seismicity-based earthquake prediction techniques. 中央大學地球科學系暨地球物理研究所 陳建志. Schematic Diagram of PI.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Epidemic-Type Aftershock-Sequences (ETAS) model' - sirvat


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

Epidemic-Type

Aftershock-Sequences

(ETAS) model

slide3

島內30公里以上規模大於5

Change Interval 1.5 yrs

Background Interval 4.5 yrs

theory of critical transitions helps understand seismicity based earthquake prediction techniques

從臨界轉變的角度理解地震預測技術Theory of critical transitions helps understand seismicity-based earthquake prediction techniques

中央大學地球科學系暨地球物理研究所陳建志

slide5

Schematic Diagram of PI

Time

1973 t0 t1 t2 t3

Schematic: Spatial Cross Section

Of Intensity Map along a Linear Track

“Change Interval”

“Forecast Interval”

Intensity = I

Intensity Change = I

Activation

P = Probability = {< I >}2

Quiescence

x (position)

I2

I1

Data

begins

1. Compute relative intensity maps:

I1=I(x,t0,t1) ; I2=I(x,t0,t2).

2.Normalize them so they have the same statistics with respect to area averages.

3. Define the averageChange Map:

<I> = <I2- I1>

The average is over all change maps having the same change interval(t1,t2).

4. DefineP = {<I> }2, and subtract the area mean to obtainP

5. Color-contourLog10{P}on a map

lurr theory
LURR Theory

P

Loading

(∆R)-

0 : number

½: Benioff strain

1: energy

1/3: size (length)

2/3:size (area)

(∆P)+

X+>X- , Y>1

(∆P)-

(∆R)+

Unloading

Loading

(∆P)+

(∆R)-

X+=X- , Y=1

(∆R)+

(∆P)-

R

Unloading

Stress-strain relation of rock materials

slide10

觀測資料與0327埔里地震關係

震央距:19km

觀測資料有反應約

在發震5秒之後

slide11

地震前後差異:

井1 約被抬升60mV/km

井2 約 60mV/km

發震前(0303-0306)

約有3秒的相對低頻訊號