1 / 52

Seminario PHD del Instituto de Matemáticas d e la Universidad de Sevilla

Dimensión M étrica de G rafos. Antonio González Departamento de Matemática Aplicada I Universidad de Sevilla. 28 de noviembre de 2012. Seminario PHD del Instituto de Matemáticas d e la Universidad de Sevilla.

siran
Download Presentation

Seminario PHD del Instituto de Matemáticas d e la Universidad de Sevilla

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DimensiónMétrica de Grafos • Antonio González • Departamento de MatemáticaAplicada I • Universidad de Sevilla 28 de noviembre de 2012 Seminario PHD del Instituto de Matemáticas de la Universidad de Sevilla

  2. Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of weighings. n = 4 2 1 {2,3,4} {1,2,3} {3,4} 2 false coins 1 false coin 2 false coins 4 3 SOLUTION: METRIC DIMENSION OF THE HYPERCUBE!!!

  3. Whatis a graph? G=(V,E) vertices edges order n = |V| y x 3 2 d(x,y)=3 4 degree

  4. Whatis a graph? CycleCn Complete GraphKn PathPn Trees leaves

  5. Resolving Sets and MetricDimension

  6. Resolving Sets and MetricDimension u3 u2 u1

  7. Resolving Sets and MetricDimension u3 u2 u1

  8. Resolving Sets and MetricDimension (3,2,1) u3 u2 u1

  9. Resolving Sets and MetricDimension (3,2,1) u3 u2 u1

  10. Resolving Sets and MetricDimension (3,1,2) (3,3,0) (3,2,1) u3 (3,0,3) (2,3,1) u2 (2,2,2) (1,3,2) (2,1,3) (1,2,3) u1 (0,3,3)

  11. Resolving Sets and MetricDimension dim(G) = cardinality of a minimumresolving set (3,1) (3,3) (3,2) (3,0) (2,3) u2 (2,2) (1,3) (2,1) METRIC BASIS (1,2) u1 (0,3)

  12. Resolving Sets and MetricDimension dim(G) = cardinality of a minimumresolving set dim(Cn) = 2 dim(Kn) = n-1 dim(Pn) = 1

  13. Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of weighings. Ø {1} {2} {3} {4} n = 4 Howto determine a possiblesituation X ? {1,2} {1,3} {1,4} {2,3} {2,4} {3,4} {1,3} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2} X X {2,3,4} {1,2,3,4} ThisisthehypercubeQn!!! V(Qn) = Subsets of {1,2,3,…,n} E(Qn) = { {U,V} : |U ∆ V|= 1 } d( U , V ) = |U ∆ V| = |U| + |V| - 2|U ∩ V|

  14. Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of weighings. dim(Qn) + 1 n = 4 Howto determine a possiblesituation X ? Ø S resolving set of Qn {1} {2} {3} {4} S can determine X !!! {1,2} {1,3} {1,4} {1,3} {2,3} {2,4} {3,4} ? d(X,Si) forevery Si єS {1,2,3} {1,2,4} {1,3,4} {2,3,4} X X {1,2,3,4} {1,2,3,4} d(X,Si) = |X| + |Si| - 2|X ∩ Si| ThisisthehypercubeQn!!! V(Qn) = Subsets of {1,2,3,…,n} E(Qn) = { {U,V} : |U ∆ V|= 1 } d( U , V ) = |U ∆ V| = |U| + |V| - 2|U ∩ V|

  15. Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of weighings. dim(Qn) + 1 [Erdős,Rényi,1963] [Lindström,1964]

  16. Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of k-weighingsifwehaveexactlyk true coins. n = 5 k = 2 {1,2} dim(J(n,k)) {3,5} {3,4} {4,5} {1,5} {2,3} Thisisthe Johnson graph J(n,k) !!! {1,4} {2,4} {1,3} {2,5} V(J(n,k)) = k-subsets of {1,2,3,…,n} E(Qn) = { {U,V} : |U ∆ V|= 2 } d( U , V ) = ½| U ∆ V| = ½(|U| + |V| - 2|U ∩ V|)= k - |U ∩ V|

  17. Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of k-weighingsifwehaveexactlyk true coins. n = 5 k = 2 {1,2} dim(J(n,k)) {3,5} {3,4} {4,5} {1,5} {2,3} Thisisthe Johnson graph J(n,k) !!! {1,4} {2,4} {1,3} {2,5} V(J(n,k)) = k-subsets of {1,2,3,…,n} E(Qn) = { {U,V} : |U ∆ V|= 2 } d( U , V ) = ½| U ∆ V| = ½(|U| + |V| - 2|U ∩ V|)= k - |U ∩ V|

  18. Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of k-weighingsifwehaveexactlyk true coins. J(7,2) J(8,2) J(6,2) Can wefindanytooltoapproachthemetricdimension of thesegraphs? dim(J(n,k)) J(6,3) J(7,3) J(8,3) FINITE GEOMETRIES

  19. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk k+1 points in every line

  20. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk k+1 points in every line

  21. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk k+1 points in every line

  22. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk k+1 points in every line

  23. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk k+1 points in every line

  24. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk k+1 points in every line

  25. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line

  26. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line

  27. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line

  28. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line

  29. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line

  30. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line

  31. FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line

  32. FiniteGeometries GiventwoverticesX,Yє V(J(n,k)), isthereany line Lє Ldistinguishingthem? Affine planes of orderk J(9,3) 1 4 3 2 5 Y X 6 Thereexistk+1distinctlinesthrougheverypoint!!! 8 9 7 k points in every line

  33. FiniteGeometries GiventwoverticesX,Yє V(J(n,k)), isthereany line Lє Ldistinguishingthem? Affine planes of orderk J(9,3) 1 4 3 2 5 Y X 6 Thereexistk+1distinctlinesthrougheverypoint!!! 8 9 7 k points in every line

  34. FiniteGeometries GiventwoverticesX,Yє V(J(n,k)), isthereany line Lє Ldistinguishingthem? Affine planes of orderk J(9,3) 1 d(L,Y) ≠ d(L,X) 4 3 2 5 Y X 6 Thereexistk+1distinctlinesthrougheverypoint!!! 8 9 7 k points in every line

  35. FiniteGeometries GiventwoverticesX,Yє V(J(n,k)), isthereany line Lє Ldistinguishingthem? Affine planes of orderk J(9,3) 1 ≠ d(L,Y) ≠ d(L,X) 4 3 2 5 Y X 6 Thereexistk+1distinctlinesthrougheverypoint!!! 8 9 7 k points in every line

  36. FiniteGeometries GiventwoverticesX,Yє V(J(n,k)), isthereany line Lє Ldistinguishingthem? [Cáceres,Garijo,G.,Márquez,Puertas,2011] Proposition: Ifk ≥ 3 is a prime power, then dim(J(k2,k)) ≤ k2 + k and dim(J(k2+k+1,k+1)) ≤ k2 + k+1. Affine planes of orderk J(9,3) Proposition: Ifn≥ 3, then dim(J(n,2))= 1 ≠ d(L,Y) ≠d(L,X) 4 3 2 5 Y X 6 Thereexistk+1distinctlinesthrougheverypoint!!! 8 9 7 k points in every line

  37. Whatelse? Steiner systems Toroidalgrids Partialgeometries

  38. Thenumber of resolving sets of a graph dim = 2 dim = 5 # bases = 1 # bases = 6

  39. Graphswith “many” metric bases Open Problem [Chartrand,Zhang,2000]: CharacterizethegraphsGsuchthateverysubset of sizedim(G) is a basis. dim ≤ 2 [Chartrand,Zhang,2000] Complete graphs and oddcycles. dim > 2 [Garijo,G.,Márquez,2011] Complete graphs. K2 K1 C3 C5

  40. UpperDimension and ResolvingNumber dim+(G)= maximumsize of a minimalresolving set res(G)= minimumksuchthateveryk-subsetis a resolving set. (1,1,2,2,3) UPPER BASIS dim(G) ≤ dim+(G) ≤ res(G) (1,1,2,2,3) Realizability ??? dim+(G) = 4 res(G) = 6

  41. Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = a c dim(Kn)=n-1 res(Kn)=n-1

  42. Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = = b a c

  43. Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = b a Theorem: Conjecture:Foreverypaira,bof integerswith 2≤a≤b, thereexists a conectedgraphG suchthatdim(G)=a and dim+(G)=b. Itis true!!! [Garijo,G.,Márquez,2011]

  44. Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = b a Howmany???

  45. Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = b a Howmany???

  46. Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = b a Howmany???

  47. Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = b a Howmany???

  48. Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = = b a c Theorem:[Garijo,G.,Márquez] Given c>3, the set of graphswithresolvingnumbercisfinite. Howmany??? QUESTION (1): Realization of triples (a,b,c). QUESTION (2): RECONSTRUCTION!!!

  49. Reconstruction Problem: givenc > 0, which are thegraphsG suchthat res(G) = c? res ≤ 2 [Chartrand,Zhang,2000] Paths and oddcycles.

  50. Reconstruction Problem: givenc > 0, which are thegraphsG suchthat res(G) = c? res ≤ 2 [Chartrand,Zhang,2000] Paths and oddcycles. res = 3 [Garijo,G.,Márquez,2011] Evencycles plus other 18 graphs.

More Related