1 / 26

Toward Construction of the Unified Lepton-Nucleus Interaction Model from tens of MeV to GeV region

Toward Construction of the Unified Lepton-Nucleus Interaction Model from tens of MeV to GeV region. Makoto Sakuda (Okayama) Feb. 10, 2012@J-PARC Hadron and Computational Physics Workshop

sienna
Download Presentation

Toward Construction of the Unified Lepton-Nucleus Interaction Model from tens of MeV to GeV region

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Toward Construction of the Unified Lepton-Nucleus Interaction Model from tens of MeV to GeV region Makoto Sakuda(Okayama) Feb. 10, 2012@J-PARC Hadron and Computational Physics Workshop In Collaboration with Koichi Saito(SUT), Hiroyuki Kamano(RCNP), Masanori Hirai (SUT), Yoshinari Hayato(ICRR), Shunzo Kumano* (KEK) and Toru Sato*(Osaka) Content • Motivation For a Precise Lepton-Nucleus Reaction Model • Neutrino experiments need precision • Nuclear interactions (1p-1h,2p-2h) and V&A structure • We have good models(QE, p, DIS) Why not integrate? • Summary

  2. First meeting on this title at JPARC centeron 18 December, 2011 Today, I will use most of the slides from this meeting. 「レプトン原子核反応模型の構築に向けて」第一回検討会   開催日: 12月17・18日 (土・日曜日) 場所: KEK東海キャンパス・東海1号館227号室 世話人:佐藤 透、熊野俊三 URL http://j-parc-th.kek.jp/collabo/2011/12-17/12-17.html 出席者: 鎌野寛之(RCNP),熊野俊三(KEK),齋藤晃一(東京理科大),作田 誠(岡大),佐藤 透(KEK、阪大),奈良 寧(国際教養大学),平井正紀(東京理科大),早戸良成(東大宇宙線研) Makoto Sakuda@JPARC

  3. Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt) (1) NuInt01 (KEK,Dec., 2001) Nucl.Phys.B(Proc.Suppl.)112, 2002 (5) NuInt07 (Fermilab,May, 2007) AIP Proc.967(2008) (6) NuInt09 (Barcelona, May,2009) AIP Proc.1189(2010) (2) NuInt02 (UC Irvine,Dec., 2002) (7) NuInt11 (India, March, 2011) AIP Proc.1405(2011) (3) NuInt04 (GranSasso,March,2004) Nucl.Phys.B(Proc.Suppl.)139, 2005 (8) NuInt12-13 (Brasil, 2012-13) (4) NuInt05 (Okayama,Sep,2005) Nucl.Phys. (Proc.Suppl.) 159,2006

  4. 1. Motivation For Precise Lepton-Nucleus Interaction Model • Neutrino experiments (LBL, Astrophysics) need better precision • Better accuracy than 10% in the neutrino cross sections (GeV region) is needed to establish sin22q13 , while 30% accuracy was enough to discover nmntoscillations (sin22q23~1). • Better accuracy in NC cross sections (atmospheric n background) is needed in detecting Supernova Relic Neutrinos (SRN) (5-50MeV). nmne appearance (T2K) nm disappearance (T2K) <10% accuracy in BKG nm x-sections is needed Nearly 100% reduction Makoto Sakuda@JPARC

  5. Status of neutrino-nucleus models(E>200MeV) • Experiments have already their own good neutrino interaction models. NEUT (SK,T2K), Nuance, Genie, NEUGEN (MINOS),,,,,. They are clever enough to know the precision that is required for producing the result. • Neutrino community has the most accurate neutrino-nucleus reaction models including e-N, p-N, p-N reactions. They care not only the primary neutrino-nucleus interactions, but also the secondary hadron interactions including absorption. • Now, we are seeing much progress in nuclear-physics problems: meson exchange current and 2p-2h. Makoto Sakuda@JPARC

  6. At E=200MeV, NC nA elastics (coherent) saturates and NC/CC QE begins to dominate. NC quasi-elastic n+16O→n+p/n+X NC Elastic(Coherent) n+16O→n+16O NC Elastic (E<200MeV) E>100MeV

  7. Features of n-A cross sections above 100MeV • Reaction types at E>100MeV • NC Elastic (coherent)+Inelastic • CC/NC Quasi-elastic • CC/NC 1p production • Resonant 1p production • Non-resonant 1p production • Coherent 1p production • CC/NC mp production • CC/NC DIS • QE,p (-nucleon Makoto Sakuda@JPARC

  8. I skip the recent progress in improved shell model calculation (E<100MeV) • JPS Journal “Buturi” (January Issue). • SFO model: Makoto Sakuda@JPARC

  9. 1) DIS (Deep Inelastic Scattering) on nuclear target • From Kumano’s slides Makoto Sakuda@JPARC

  10. Nuclear PDF (EMC effects) -Kumano Makoto Sakuda@JPARC

  11. 2) Resonance production in e-N and the constraint on the n-N modelling • The e-N experiments have recently determined the helicity amplitudes for Resonances, P33(1232), P11(1440), D13(1530), and S11(1535) which contribute below W=2GeV. • Your n-model must be consistent with e-N data. • Lalakulich-Paschos et al.(05,06) • Sato-Lee model • MAID model

  12. Definition of helicity amplitudes (A3/2, A1/2, S1/2)

  13. Tiator et al., EPJ.A17,357(03);A19,55(04)MAID helicity amplitudes for W<2GeV. • P33(1232) , D13(1520) S11(1535), P11(1440) M.Sakuda@NuFact10

  14. Sato-Lee Model of neutrino-nucleon reaction in the nucleon resonance region Isobar model Rein Sehgal AP133(80) Alvarez-Ruso et al. PRC57(98) Lin et al. PRC52(95) Paschos et al. PRD65(02) Lalakulich et al. PRD71(05), PRD74(06) Leitner et al. PRC79(09) + non-res. (chiral Lagrangian) Hernandez et al. PRD76 (07),PRD81(10) Lalakulich et al. arXiv 1007.0925 + non-res + unitarity Sato-Lee PRC67(03),PRC72(05) • E < 1GeV, D(33) dominance • Detail of mechanism should be tested by extensive data of pion electroproduction

  15. p production (Sato-Lee Model) • Model describes very well p production in e-N, g-N and n-N reaction.N=nucleon. X-axis= p angle. Makoto Sakuda@JPARC

  16. full SL PRC67(03) Delta_33 Leitner et al. RPC79(09) Hernandez et al PRD76(07)

  17. Results from NuInt-Quantitative comparison of calculation and data- Quasi-Elastic is understood to 10% for E=700MeV-2000MeV (and Q2>0.2 (GeV/c)2) 1p (D) production Sato-Lee, Lalakulich Understood to 20-30%? DIS (Kumano-san)

  18. 3) CC Quasi-elastic interaction -Hayato

  19. Quasi-elastic interaction • We thought that Impulse Approximation with Spectral Function plus FSI describes QE to 10% level. • Benhar, MS et al., PRD72,053005, ’05 • NC/CC QE events accompany g-rays (6MeV) at 40% level for O. • Ankowski,Benhar,MS et al, PRL 108,052505,’12.

  20. g-rays (Eg>5MeV) in NC QE reaction Br~40% Br~40%

  21. MiniBooNE QE Anomaly (PRD81,092005,’09) • Is theory (IA calculation) underestimates quasi-elastic cross section data C(n,m), while it agrees with C(e,e’) data?? • MA:MA=1.0-1.2GeV 1.6GeV?? • 2p-2h/MEC large?? Benhar-Meloni, PRL105,132301,2010 C(n,m) C(e,e’)

  22. 2p-2h/MEC or Contribution from the high energy tail • Martini, Nieves, Donnelly …estimates 2p-2h/MEC contribution (~20%) and proposes a solution to MiniBooNE QE anomaly. • Nieves et al., PRC83,045501,2011;Meucci et al., PRL107,172501,2011;Amaro et al.,PRD84,033004,2011 • Benhar (hep-th/1110.1835) points out a big difference between A(e,e’) and A(n,m), where En spead is large.

  23. MiniBooNE anomaly quasi-elastic Makoto Sakuda@JPARC

  24. 2. We have good models(QE, p, DIS) Why not integarate? • Sato-Lee model (QE+1p,2p), CC/NC. • 16N* resonances, Coherent p. non-resonant background. • Add to it: • Spectral function S(p,E) • FSI • DIS (Nuclear PDF a la Kumano) • We hope that 2p-2h contribution will be checked and resolved. Makoto Sakuda@JPARC

  25. Summary • We have good models(QE, p, DIS) separately. • We are discussing how to make a first merged lepton-nuleus model (a toy model) (being organized by Kumano/Sato). • Next meeting on March 18-20. • Poster at n2012 Makoto Sakuda@JPARC

More Related