slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
IV. ÁSVÁNYVAGYON ÉRTÉKELÉS Vagyonbecslés és kategorizálás PowerPoint Presentation
Download Presentation
IV. ÁSVÁNYVAGYON ÉRTÉKELÉS Vagyonbecslés és kategorizálás

Loading in 2 Seconds...

play fullscreen
1 / 17

IV. ÁSVÁNYVAGYON ÉRTÉKELÉS Vagyonbecslés és kategorizálás - PowerPoint PPT Presentation


  • 102 Views
  • Uploaded on

A Szénhidrogén Kutatás Menedzsmentje Miskolci Egyetem, Műszaki Földtudományi Kar, Ásványtani-Földtani Intézet Szilágyi Imre, Geológus-Közgazdász. IV. ÁSVÁNYVAGYON ÉRTÉKELÉS Vagyonbecslés és kategorizálás. Prognosztikus vagyon Prognostic resource. Proszpektív vagyon Prospective resource.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'IV. ÁSVÁNYVAGYON ÉRTÉKELÉS Vagyonbecslés és kategorizálás' - shawn


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

A Szénhidrogén Kutatás Menedzsmentje

Miskolci Egyetem, Műszaki Földtudományi Kar, Ásványtani-Földtani Intézet

Szilágyi Imre, Geológus-Közgazdász

IV. ÁSVÁNYVAGYON ÉRTÉKELÉS

Vagyonbecslés és kategorizálás

slide2

Prognosztikus vagyon

Prognostic resource

Proszpektív vagyon

Prospective resource

„Kifejlesztetlen” vagyon

Undeveloped resource

„Kifejlesztett” vagyon

Developed resource

Szénhidrogén telepre vonatkozó volumetrikus becslés

Olajvállalati feladat

Medenceszintű prognózis, play-analízisen alapuló nagyvonalú becslés

Állami feladat (lenne)

Potenciális CH-tároló szerkezetre vonatkozó volumetrikus becslés

Olajvállalati feladat

ÁSVÁNYVAGYON ÉRTÉKELÉS – Ismeretességi szintek

2

A kutatás „folyamata” és az ismeretességi szintek

Adatértelmezés

Geológiai Modellezés

Operáció tervezés

Appraisal

Medence modellezés

Proszpekt térképezés

Proszpekt feltárás

Mező- fejlesztés

Felfedezett telep

Termeltethető telep

Üledékes medence

Proszpekt

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide3

ÁSVÁNYVAGYON ÉRTÉKELÉS – Halmazok

3

Ásványvagyon halmazok

  • Földtani vagyon (Original In-place Resource, OOIP, OGIP, OPIP)
    • a tárolókőzetekben található („in-place”), de felszíni viszonyokra vonatkozó mennyiség
      • a termelés megindítása előtti, „kezdeti” állapotra vonatkoztatva („original”)
      • a termelés megindítása után: aktuális („actual”)
      • geológiai modellfejlesztés  változik a vagyon kezdeti („original”) mennyisége
      • rögzíteni kell a vonatkoztatási időpontot
  • Kitermelhető vagyon – Ipari vagyon (Recoverable Resource, Qr)
    • ismert, rendelkezésre álló vagy állítható technológiával kitermelhetőnek tekintett mennyiség
      • technológia: kutak, kiemelés-technológia, felszíni gyűjtő- és előfeldolgozó rendszer
      • ismert technológia: más telepeknél már bevált, sikerrel alkalmazott
      • kezdeti („original”) és aktuális („actual”) mennyiség
      • kihozatali tényező (recovery factor): RF = Qr/QOPIP
        • a telep legfontosabb geo-műszaki és gazdasági paramétere
        • olaj: 10-50%; gáz: 50-90%

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide4

ÁSVÁNYVAGYON ÉRTÉKELÉS – Mennyiségbecslés

4

Ásványvagyon becslés megközelítése

  • A mennyiség meghatározása nem mérnöki számítás, hanem becslés:
    • mennyi szénhidrogén keletkezhetett?
    • mennyi csapdázódhatott?
    • mennyi termelhető (még) ki várhatóan a telepből?
    • bizonytalanság és kockázatosság
    • objektíven nehezen megítélhető fogalmak…
  • „Közös nevező” keresése – mennyiség-becslési „kultúrák”:
    • motivációja a befektetés kockázatosságának homogén megítélésére való törekvés
    • „orosz rendszer”: A, B, C1, C2, C3 valószínűségi kategóriák
    • „angolszász rendszer”: „bizonyított” – „valószínű” – „lehetséges”

SPE (Society of Petroleum Engineers) Resource Management System

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide5

ÁSVÁNYVAGYON ÉRTÉKELÉS – Mennyiségbecslés

5

Vagyonszámítás

Földtani vagyon:

Veff × Φ × (1-Sw)

QOPIP = ----------------------

FVF

  • Veff: effektív kőzettérfogat
    • a tárolókőzet-térfogat és az effektivitás szorzata
      • tárolókőzet-térfogat: permeábilis tető – permeábilis talp vagy fázishatár által határolt test
      • effektivitás: permeábilis/impermeábilis szakaszok becsült vastagság aránya (%)
    • meghatározás: mélység- és vastagság térképek, fúrási adatok, lyukgeofizikai szelvények
  • Φ: porozitás
    • a pórustérfogat és az effektív kőzettérfogat aránya (%)
    • meghatározás: magvizsgálatok, lyukgeofizikai szelvények
  • Sw: víztelítettség (%)
    • a vízzel telített pórustérfogat és a teljes pórustérfogat aránya
    • meghatározás: lyukgeofizikai szelvények

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide6

ÁSVÁNYVAGYON ÉRTÉKELÉS – Mennyiségbecslés

6

Vagyonszámítás

Földtani vagyon:

Veff × Φ × (1-Sw)

QOPIP = ----------------------

FVF

  • FVF: teleptérfogati tényező (formation volume factor)
    • a fluidumok telepbeli és felszíni nyomás és hőmérséklet viszonyokra vonatkoztatott
    • térfogat-aránya(%)
    • meghatározás: laboratóriumi mérések

Ipari vagyon:

Qr = QOPIP × RF

  • RF: kihozatali tényező (%)
    • kutak számától és azok hozamától függ – meghatározása optimalizálási feladat
    • függ az éppen alkalmazhatónak vélt technológiától  a telep „élete” során időben változik

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide7

ÁSVÁNYVAGYON ÉRTÉKELÉS – Mennyiségbecslés

7

Weff , Φ, Sw, FVF, RF

  • geológiai és hidrodinamikai események eredményeképp alakulnak
  • múltban lejátszódott kockázatos események
    • szedimentáció
    • litifikáció
    • erózió
    • feltöltődés
    • betemetődés, mélység
    • stb…
  • az eredmény a véletlen „szerencse” műve
  • valószínűségi változók

Üdvözlet a valószínűség-számítás világában!

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide8

ÁSVÁNYVAGYON ÉRTÉKELÉS – Valószínűség-számítási alapok

8

Valószínűség becslés

  • Kockázatos események:
  • a jövőben következnek be
  • többféle kimenetük lehet, hogy éppen melyik következik be, az a véletlen műve
  • a kimeneteket illetően létezhetnek múltbéli szabályszerűségek
  • ezek alapján megbecsülhető egy adott, kedvezőnek tartott kimenetel valószínűsége
  • a kedvezőtlennek ítélt kimenetel valószínűsége a kockázat
  • minden jövőben bekövetkező esemény kockázatos – legfeljebb a kockázat elhanyagolható
  • Valószínűség becslési módszerek:
  • empirikus módon, múltbeli tapasztalatok jövőbeni kivetítésével
    • pl. egy részvény árfolyam adott értékű emelkedésének múltbeli gyakorisága a bekövetkezés valószínűsége
    • kellő számú múltbeli megfigyelés szükséges
  • hipotézis vizsgálattal
    • nincs kellő számú „múltbéli” megfigyelésünk
    • (azt gondoljuk, hogy) ismerjük a kockázatos kimenetek elméleti eloszlását
    • felállítunk egy hipotézist, vizsgáljuk, hogy az milyen „jósággal” illeszkedik az elméleti eloszláshoz
    • pl. politikai pártpreferenciák

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide9

ÁSVÁNYVAGYON ÉRTÉKELÉS – Valószínűség-számítási alapok

9

Valószínűség becslés

  • Valószínűség becslési módszerek:
  • geometriai úton
    • alakzatok, mértani testek tulajdonságainak figyelembe vételével
    • pl. a kockadobás: mindegyik érték bekövetkezésének valószínűsége 1/6
  • szubjektív becsléssel
    • nincs vagy nem ismert a szabályszerűség, tapasztalataink nem empirikusak
    • analógiák, megérzések
    • egyéni megítéléstől, helyzettől függ
  • pl. mennyi a valószínűsége, hogy a tanár úr tud focizni?
  • ha tud, akkor mennyi a valószínűsége, hogy:
    • beférne a magyar öregfiúk válogatottba?
    • beveszik kispályás focicsapatba?
    • a 12 éves unokaöccse leáll vele passzolgatni?
  • valószínűség számítási tételek segítségével
    • képletek, levezetések
    • pl. feltételes események
      • „mennyi a valószínűsége, hogy ha holnap Budapesten esni fog, akkor dugó lesz a Körúton?”
    • pl. független események
      • „mennyi a valószínűsége, hogy holnap Budapesten esni fog és Sydney-ben süt a nap?”

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide10

ÁSVÁNYVAGYON ÉRTÉKELÉS – Valószínűség-számítási alapok

10

Valószínűségi változók eloszlás-típusai, jellemzésük

Diszkrét valószínűségi változók

  • konkrét értékeket egy adott

valószínűséggel vesznek fel

  • példák:
    • binomiális eloszlás (kockadobás)
    • Poisson eloszlás (árvíz)

Folytonos valószínűségi változók

  • a terjedelem összes értékét

felveszik egy adott valószínűséggel

  • példák:
    • exponenciális eloszlás (telefon)
    • normális eloszlás (természeti jelenségek)

Eloszlások jellemzése

  • középérték mutatók
    • módusz – az eloszlás legnagyobb valószínűségű értéke
    • medián – az eloszlás azon értéke, amelynél a kisebb és nagyobb értékek azonos valószínűek
    • várható érték (átlag) – az értékek és a valószínűségek szorzatösszege
  • ingadozás mutatók:
    • terjedelem (min – max)
    • variancia (a várható értéktől való eltérés négyzetes átlaga)
    • szórás (a variancia négyzetgyöke)

Valószínűség függvények

  • sűrűségfüggvény (érték – valószínűség)
  • eloszlásfüggvény (érték – kumulált valószínűség)

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide11

ÁSVÁNYVAGYON ÉRTÉKELÉS – Valószínűség-számítási alapok

11

Kockázatos kimenetek várható értéke

  • Várható érték
  • a kimenetek értékeinek és valószínűségeinek szorzatösszege

E(X) = Σ pi × xi

ahol

x a kimenet értéke

p a kimenet valószínűsége

i a kimenetek száma

és Σ pi = 1

  • nem feltétlenül azonos a legvalószínűbb kimenetel értékével
  • nem biztos, hogy egyáltalán bekövetkezhet
    • pl. a kockadobás várható értéke 3,5…
    • bekövetkezése lehet a véletlen műve is…
  • kockázatosság: a várható értéktől való eltérés mértéke ≈ variancia, szórás
  • a szórás ≠ kockázat, csak jelzi, hogy az esemény mennyire kockázatos

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide12

a paraméterek eloszlását meghatározó események

    • szedimentáció
    • litifikáció
    • erózió
    • tektonika
    • feltöltődés
    • betemetődés
    • stb…

A paraméterek normális eloszlással írhatók le

  • nagyszámú kimenet
  • véletlenszerűség

ÁSVÁNYVAGYON ÉRTÉKELÉS – Mennyiségbecslés

12

Weff , Φ, Sw, FVF, RF; mint valószínűségi változók

Központi Határeloszlás Tétele („nagy számok törvénye”)

„…a nagy számú véletlenszerűség következtében kialakuló, véges középértékkel és varianciával jellemezhető valószínűségi változók normális eloszlással írhatók le…”

Sajátosságok

  • véges terjedelmek: vágási értékek; MIN és MAX meghatározott pozitív számok
  • „jobboldali” aszimmetria: MAX-MOD > MOD-MIN
  • bimodalitás: két módusz, pl. kettős porozitás esetén

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide13

hisztogram sűrűségfüggvény

p

x

A tároló és fluidum paraméterek esetében a leíró statisztikai megközelítés nem működik:

  • nincsenek „múltbéli tapasztalatok” – nem tudjuk, mi történhetett pl. a miocénben…
  • nincs reprezentatívnak tekinthető minta – pl. csak egy porozitás adatunk van…

p

?

Szakértői becslések

  • analógiák alapján
  • szubjektív módon

Weff , Φ, Sw, FVF, RF

ÁSVÁNYVAGYON ÉRTÉKELÉS – Mennyiségbecslés

13

Weff , Φ, Sw, FVF, RF; mint valószínűségi változók

Eloszlások leíró statisztikai megközelítése:

  • „múltbéli tapasztalatok”
  • mintavétel

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide14

Veff × Φ × (1-Sw)

QOPIP = ----------------------

FVF

Qr = QOPIP × RF

A földtani és az ipari vagyon (QOPIP és Qr) log-normális eloszlású valószínűségi változók

  • empirikus bizonyítékok

p; P

Q

ÁSVÁNYVAGYON ÉRTÉKELÉS – Mennyiségbecslés

14

Weff , Φ, Sw, FVF  QOPIP

QOPIP , RF  Qr

Központi Határeloszlás Tételének továbbgondolása:

„…a normális eloszlású valószínűségi változók szorzataként előállítható mennyiségek log-normális eloszlással közelíthető valószínűségi változók…”

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide15

QOPIP

Qr

RF

Szimuláció véletlenszám-generátor segítségével

(Monte-Carlo szimuláció)

Szimuláció véletlenszám-generátor segítségével

(Monte-Carlo szimuláció)

FVF

Weff

Φ

Sw

P ; p

  • P90; P50; P10
    • P90: 90%  P(Qr)  P(MIN)
    • P50: P(Qr) = 50%
    • P10: 10%  P(Qr) <50%

Qr

P90

P10

P50

MIN

MAX

ÁSVÁNYVAGYON ÉRTÉKELÉS – Vagyon kategorizálás

15

Probabilisztikus becslés

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide16

Weff , Φ, Sw, FVF, RF

  • megbecsüljük pesszimista, legvalószínűbb és optimista értéküket
  • „low estimate” (LE); „best estimate” (BE); „high estimate” (HE)

VeffLE× ΦLE × (1-SwLE)

QOPIPLE = -------------------------------

FVFLE

  • QrLE
  • „nagy bizonyossággal kitermelhető”

RFLE

VeffBE × ΦBE × (1-SwBE)

QOPIPBE = -------------------------------

FVFBE

  • QrBE
  • „ugyanakkora eséllyel lehet több

vagy kevesebb”

RFBE

VeffHE× ΦHE × (1-SwHE)

QOPIPHE = -------------------------------

FVFHE

  • QrHE
  • „akár ennyi is lehet”

RFHE

ÁSVÁNYVAGYON ÉRTÉKELÉS – Vagyon kategorizálás

16

Determinisztikus becslés

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013

slide17

QrLE

  • „nagy bizonyossággal kitermelhető”
  • P90: bizonyítottnak tekinthető vagyon
  • legalább 90% az esélye, hogy legalább ennyi kitermelhető

  • QrBE
  • „ugyanakkora eséllyel lehet több

vagy kevesebb”

  • P50: bizonyított+valószínűnek tekinthető vagyon
  • 50% az esélye, hogy legalább ennyi kitermelhető
  • QrHE
  • „akár ennyi is lehet”

  • P10: bizonyított+valószínű+lehetségesnek tekinthető vagyon
  • legalább 10% az esélye, hogy legalább ennyi kitermelhető

ÁSVÁNYVAGYON ÉRTÉKELÉS – Vagyon kategorizálás

17

Probabilisztikus vs. determinisztikus becslés

Megfeleltetés

Furcsaságok

  • a vállalatok inkább választják a determinisztikát, pedig a „valóság” probabilisztikus…
  • nem a várható érték, hanem a P90/LE vagy a P50/BE vagy a P10/LE…
  • a bizonytalanságot (uncertainty) nem a variancia/szórás jellemzi, hanem a

P90/LE és a P50/BE és a P10/HE…

Mennyit ér az ásványvagyon? Pontosabban: mennyi az ásványvagyon várható értéke?

A szénhidrogén kutatás menedzsmentje. Szilágyi Imre, ME MFK, Ásványtani-Földtani Intézet, 2013