540 likes | 737 Views
VIII International W orkshop to T he M emory of Professor V.P. Sarantsev. Status of NICA Project N uclotron -based I on C ollider f A cility. I.Meshkov for NICA Collaboration. Alushta, Crimea September 1, 2009. Contents Introduction: Physics case of NICA
E N D
VIII International Workshop to The Memory of Professor V.P. Sarantsev Status of NICAProject Nuclotron-based IonColliderfAcility I.Meshkov forNICA Collaboration Alushta, Crimea September 1, 2009
Contents Introduction: Physics case of NICA Development of the NICA Concept and Technical Design Report 1. NICA scheme & layout 2. Heavy ions in NICA 2.1. Operation regime and parameters 2.2. Collider 3. Polarized particle beams inNICA 4. NICA project status and nearest plans Conclusion I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
Introduction: Physics case of the NICA Nuclei n/n_nuclear (n_nuclear = 0.16 fm-3) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 GSI/JINR/BNL 2005 - 2009 NICA (2006) critRHIC (2009) International co-operation: Round Table DiscussionsI, II, III JINR, Dubna, 2005, 2006, 2008 http://theor.jinr.ru/meetings/2008/roundtable/ International co-operation: Round Table IV: September 9 – 12, 2009, JINR, Dubna
Introduction: Development of the NICA Concept and TDR January 2008 NICA CDR MPD LoI January 2009 NICA CDR (Short version) Conceptual Design Report of Nuclotron-based Ion Collider fAcility (NICA) (Short version) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
Introduction: Development of the NICA Concept and TDR August 2009 NICA TDR (volumes I & II) Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) Технический проект Том I Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) Технический проект Том II Дубна,2009 Дубна,2009 I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
Introduction: Development of the NICA Concept and TDR Approved by Director of JINR academicianA.N.Sisakian ____________________ Nuclotron-based Ion Collider fAcility (NICA) "____"2009 г. Technical Design Report Project leaders: A.Sisakian,A.Sorin TDR has been developed by the NICA collaborationp: JINR Physicists and engineers: N.Agapov, E.Ahmanova, V.Alexandrov, A.Alfeev, O.Brovko, A.Butenko, E.D.Donets, E.E.Donets, A.Eliseev, A.Govorov, I.Issinsky, E.Ivanov, V.Karpinsky, V.Kekelidze, G.Khodzhibagiyan, A.Kobets, V.Kobets, A.Kovalenko, O.Kozlov, A.Kuznetsov, V.Mikhailov, V.Monchinsky, A.Sidorin, A.Smirnov, A.Olchevsky, R.Pivin, Yu.Potrebennikov, A.Rudakov, A.Smirnov, G.Trubnikov, V.Shevtsov, B.-R.Vasilishin, V.Volkov, S.Yakovenko, V.Zhabitsky Designers: V.Agapova, G.Berezin, V.Borisov, V.Bykovsky, A.Bychkov, T.Volobueva, E.Voronina, S.Kukarnikov, T.Prakhova, S.Rabtsun, G.Titova, Yu.Tumanova, A.Shabunov, V.Shokin IHEP, Protvino O.Belyaev, Yu.Budanov, S.Ivanov, A.Maltsev, I.Zvonarev, INRRAS, Troitsk V.Matveev, A.Belov, L.Kravchuk Budker INP, Novosibirsk V.Arbuzov, Yu.Biriuchevsky, S.Krutikhin, G.Kurkin, B.Persov, V.Petrov, A.Pilan Chief engineer of the ProjectV.Kalagin, Chief designer of the ProjectN.Topilin Editors:I.Meshkov, A.Sidorin I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
Introduction: Development of the NICA Concept and TDR Since publication of the 1-st version of the NICA CDR The Concept was developed, the volumes I and II of the TDR have been completed: Volume I – Part 1, General description Part 2, Injector complex Volume II – Part 3, Booster-Synchrotron A brief review of the Project, its status and plans of realization are presented here. I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
Introduction: Development of the NICA Concept and TDR The Project goals formulated in NICA CDR are the following: 1a) Heavy ion colliding beams 197Au79+ x 197Au79+ at sNN = 4 11 GeV (1 4.5 GeV/u ion kinetic energy ) at Laverage= 11027 cm-2s-1 (at sNN = 9 GeV) 1b) Light-Heavy ion colliding beams of the energy range and luminosity 2) Polarized beams of protons and deuterons: pp sNN = 12 25 GeV (5 12.6 GeV kinetic energy ) dd sNN = 4 13.8 GeV (2 5.9 GeV/u ion kinetic energy ) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
1. NICA scheme & layout 2.3 m 4.0 m Booster Spin Physics Detector (SPD) Synchrophasotron yoke Nuclotron Existing beam lines (solid target exp-s) MPD I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 Collider C = 251 m
“Old” Linac LU-20 Booster KRION + “New” HILAC Nuclotron Collider Beam dump I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 1. NICA scheme & layout (Contnd) MPD SPD
2. Heavy ions in NICA Nuclotron (45 Tm) injection of one bunch of 1.1×109 ions, acceleration up to 14.5 GeV/u max. IP-1 Two superconducting collider rings IP-2 Bunch compression (RF phase jump) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 2.1. Operation regime and parameters Injector: 2×109 ions/pulse of 197Au32+ at energy of 6.2 MeV/u Booster (25 Tm) 1(2-3) single-turn injection, storage of 2 (4-6)×109, acceleration up to 100 MeV/u, electron cooling, acceleration up to 600 MeV/u Collider (45 Tm) Storage of 17 (20) bunches 1109 ions per ring at 14.5 GeV/u, electron and/or stochastic cooling Stripping (80%) 197Au32+ 197Au79+ 2х17 (20) injection cycles
2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch parameters dynamics in the injection chain I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch compression in Nuclotron A.Eliseev Phase space portraits of the bunch Bunch rotation by “RF amplitude jump” 15 120 kV E – E0 , 2 GeV/div 2 1 , 10 deg./div I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch compression in Nuclotron Phase space portraits of the bunch (RF “phase jump” = 1800) E – E0 , 2 GeV/div A.Eliseev , 50 deg./div _r.m.s. 5 deg./div. (1 deg. 0.7 m) E_r.m.c. 200 MeV/div. _r.m.s. 0.5 eVsec/div time, 0.1 sec/div. I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
2. Heavy ions in NICA (Contnd) 34 injection cycles to Collider rings of 1109 ions 197Au79+ per cycle 1.71010 ions/ring 2.1. Operation regime and parameters Time Table of The Storage Process Booster magnetic field B(t), arb. units t, [s] Nuclotron magnetic field B(t), arb. units t, [s] I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 electron cooling Extraction, stripping to 197Au79+ 1 (2-3) injection cycles, electron cooling (?) bunch compression, extraction injection
2. Heavy ions in NICA (Contnd) I.Meshkov, O.Kozlov, V.Mikhailov, A.Sidorin, A.Smirnov, N.Topilin Spin rotator 10 m x,y kicker I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 2.2. Collider E_cooler MPD S_Cool PU x, y, long Upper ring Injection channels Long. kicker SPD RF Beam dump
2. Heavy ions in NICA (Contnd) 2.2. Collider General Parameters I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
2. Heavy ions in NICA (Contnd) 2.2. Collider General parameters (Contnd) ! I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
2. Heavy ions in NICA (Contnd) 2.2. Collider General parameters (Contnd) Collider beam parameters and luminosity I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) • Two injection schemes are considered: 1) bunch by bunch injection, 17 bunches: • bunch number is limited by kicker pulse duration, • bunch compression in Nuclotron is required (!) • Electron and/or stochastic cooling is used for luminosity preservation. I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 • 2) Injection and storage with barrier bucket technique and coolingof a coasting (!) beam, 20 bunches, • bunch number is limited by interbunch space in IP straight section, • bunch compression in Nuclotron is NOT required (!) • Electron and/or stochastic cooling for storage and luminosity preservation, bunch formation after storage are required.
2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) V(t) Cavity voltage Injectedbunch Time domain time Revolution period (p)ion V(t) Phase domain Cavity voltage Stack phase 0 2 Revolution period I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 Barrier Bucket Method Ion storage with “barrier bucket” (BB) method: Periodic voltage pulses applied to a low quality cavity (“meander”) when stochastic or electron cooling is ON.
2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Barrier Bucket Method Particle motion in “the phase domain” Phase domain (p)ion V(t) Cavity voltage phase 2 0 At BB = 2 the Formula coincides with that one for harmonic RF Separatrix: I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
2. Heavy ions in NICA (Contnd) 2.2. Collider(Contnd) Barrier Bucket Method (Contnd) Ion trajectory in the phase space (p, ) (p)ion V(t) p (p)separatrix Cavity voltage 2 0 Unstable phase area (injection area) _stack In reality RF voltage pulses can be (and are actually) of nonrectangular shape I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 Cooling is ON Stack The method was tested experimentally at ESR (GSI) with electron cooling (2008). NICA: Trevolution = 0.85 0.96 s, VBB 16 kV
2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Collider luminosity vs Ion Energy Two outmost cases at QLasslett = Const : 1) L(E)= Const ; 2) Nion(E) = Const . 10 1.0 0.1 0.01 L(E) [1E27 cm-2∙s-1] 1.6 1.4 1.2 1.0 0.8 N_ion/bunch vs Energy [1E9] 10 1.0 0.1 _norm(E) [∙mm∙mrad] ! 0.5 1.5 2.5 3.5 4.5 E, GeV/u 0.5 1.5 2.5 3.5 4.5 E, GeV/u 0.5 1.5 2.5 3.5 4.5 E, GeV/u I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) IBS Heating and cooling –luminosity evolution at electron cooling B [kG] 8 6 4 2 6 Luminosity [1E27 cm-2∙s-1] 4 2 0 BETACOOL simulation ! Te = 10 eV Parameters ion beam: 197Au79+ at 3.5 GeV/u, initial =0.5 ∙mm∙mrad, (p/p) = 1∙10-3 electron beam: Ie = 0.5 A, re = 2 mm, Te|| = 5 meV; = 0.024 (6 m/250 m) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 Conclusion: Electron magnetization is much more preferable
2. Heavy ions in NICA (Contnd) 2.2. Collider: electron cloud effect Electron cloud formation criteria The necessary condition: The sufficient condition (“multipactor effect”): Here c is ion velocity, Z – ion charge number, b – vacuum chamber radius, re – electron classic radius, lspace – distance between bunches, me– electron mass, c – the speed of light, crit ~ 1 keV – electron energy sufficient for secondary electron generation. For NICA parameters (197Au79+ ions) (Nbunch)necessary ~ 7108, (Nbunch)sufficient~ 6109. I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
2. Heavy ions in NICA (Contnd) What is “old” and what is new? 2.2. Collider: the problems to be solved • Collider SC dipoles with max B up to 4 T, • Lattice and working point “flexibility”, • RF parameters (related problem), • Single bunch stability, • Vacuum chamber impedance and multibunch stability, • Stochastic cooling of bunched ion beam, • Electron cooling at electron energy up to 2.5 MeV I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
3. Polarized particle beams inNICA Spin rotator: “Full Siberian snake” Longitudinal polarization formation Yu.Filatov, I.Meshkov MPD B B I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 Upper ring SPD “Siberian snake”: Protons, 1 E 12 GeV (BL)solenoid 50 T∙m Deuterons, 1 E 5 GeV/u (BL)solenoid 140 T∙m
3. Polarized particle beams inNICA (Contnd) Longitudinal polarization formation (Contnd) MPD SPD “Full Siberian snake” Lower ring B I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
3. Polarized particle beams inNICA (Contnd) Polarized particle beams injection S From Nuclotron B ~ 900 Spin rotator I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 Protons, 1 E 12 GeV (BL)dipole 3 T∙m Deuterons, 1 E 5 GeV/u (BL)dipole 5.8 T∙m
3. Polarized particle beams inNICA (Contnd) Parameters of polarized proton beams in collider I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
3. Polarized particle beams inNICA (Contnd) Polarized particle acceleration in Nuclotron: Spin resonances Q – betatron and spin precession tunes, k, m – integers, p – number of superiods (8 for Nuclotron) Power of the Spin resonances: P1,2 ~ 103∙P3,4 I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
3. Polarized particle beams inNICA (Contnd) Polarized proton acceleration in Nuclotron: Fast crossing of spin resonances Yu.Filatov y s x Fast spin rotator y y y y y Bx Bx Bs Bs Bx s s s x x Qs - Qres Spin tune dynamics t I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 x y x -y -2∙x QS = x∙y/2 per 1 turn Protons, 12 GeV, t = 100 s BxLx = 0.18 T∙m, By∙Ly = 4.7 T∙m
4.NICA project status and plans 2009 2010 2011 2012 2013 2014 2015 KRION LINAC + trans. channel Booster: magnetic system Booster + trans. channel Nuclotron-M Nuclotron-NICA Transfer channel to Collider Collider Diagnostics PS systems Control systems Infrastructure R & D design Manufctrng + mounting mountg+commssiong comms/operatn operation I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
4. NICA project status and plans E.D.Donets E.E.Donets 4.1. Injector KRION - Cryogenic ion source of “electron-string” type developed by E.Donets group at JINR. It is aimed to generation of heavy multicharged ions (e.g.197Au32+). KRION-6T Cryostat & vac. chamber HILAC – Heavy ion linac RFQ + Drift Tube Linac (DTL), under design and construction (O.Belyaev & the Team, IHEP, Protvino). RFQ Electrodes Sector H-cavity of “Ural” RFQ DTL (prototype) 2H cavities of "Ural" RFQ (prototype) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 To be commissioned in 2013. To be commissioned in 2013.
4. NICA project status and plans A.Butenko V.Mikhailov G.Khodjibagiyan N.Topilin 2.3 m Vladimir I. Veksler 4.0 m I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 4.2. Booster Igor B. Issinsky “Nuclotron-type” SC magnets for Booster Superconducting Booster in the magnet yoke of The Synchrophasotron Nuclotron Synchrophasotron yoke Booster • B = 25 Tm, Bmax = 1.8 T • 3 single-turn injections • 2) Storage and electron cooling of 8×109197Au32+ • 3) Acceleration up to 440 MeV/u • 4) Extraction & stripping Dismounting is in progress presently To be commissioned in 2013.
4. NICA project status and plans 4.2. Booster (Contnd) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
4. NICA project status and plans 4.2. Booster (Contnd) Heavy ion Linac Beam injection Electron cooling system 2.3 m 4.0 m Slow extraction RF system Fast extraction Transfer to Nuclotron Experimental area bld. 1 B I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 See session 6, A.V.Eliseev: Boster-Nuclotron chain…
4. NICA project status and plans 4.2. Booster (Contnd) Booster parameters Circumference 214 m Max B 27 T·m Lattice type FODO Superperiods 4 Periods 24 Strait sections 2 x 8,6 m Dipol magnets 40 x 2 m Maximum dipole field 1,8 T Quadrupole magnets 48 x 0.4 m Vacuum 10-11 Torr I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
4. NICA project status and plans 4.2. Booster (Contnd) Booster superperiod lattice functions I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 Booster FODO lattice
4. NICA project status and plans 4.2. Booster (Contnd) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 Ring equipment
4. NICA project status and plans 4.2. Booster (Contnd) Three pulses of single turn injection I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 Injection pulses FirstSecondThird x y Closed orbit displacement t Injection & extraction Injection scheme Extraction scheme
4. NICA project status and plans 4.2. Booster (Contnd) Vacuum system I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
4. NICA project status and plans 4.2. Booster (Contnd) SC hollow cable I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 SC magnet technology
4. NICA project status and plans 4.2. Booster (Contnd) Main Power Supply system Main power supply unit: Maximum current 12 kA Voltage 250 V I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
4. NICA project status and plans 4.2. Booster (Contnd) RF system (designed by Budker INP) I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
4.2. Booster (Contnd) 4. NICA project status and plans E.Ahmanova, I.Meshkov, A.Smirnov, N.Topilin, Yu.Tumanova, S.Yakovenko Electron cooling system of the Booster collector “warm” solenoids electron gun cryogenic shield superconducting solenoids I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
4.2. Booster Contnd) 4. NICA project status and plans Electron cooling system of the Booster (Contnd) e-gun e-collector I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009
4. NICA project status and plans 4.3. Nuclotron-NICA G.Trubnikov & the Team • To be designed, • constructed and commissioned: • Injection system (new HILAC) • RF system – new version with bunch compression • 3.Dedicated diagnostics • 4.Single turn extraction with fine synchronization • 5.Polarized protons acceleration in Nuclotron I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 See the next talk, G.V.Trubnikov: Nuclotron-M… To be commissioned in 2013.
4. NICA project status and plans 4.4. Collider Double ring collider;(B)max = 45 Tm, Bmax = 4 T A.Kovalenko G.Khodjibagiyan “Twin magnets” for NICA collider rings “Twin” dipoles “Twin” quadrupoles 1 – Cos coils, 2 – “collars”, 3 – He header, 4 – iron yoke, 5 – thermoshield, 6 – outer jacket I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 To be commissioned in 2014.