# 'Println gcd 1272' presentation slideshows

## Recursive GCD Demo

Recursive GCD Demo. public class Euclid { public static int gcd ( int p , int q ) { if ( q == 0 ) return p ; else return gcd ( q , p % q ); } public static void main ( String [] args ) { System . out . println ( gcd ( 1272 , 216 )); } }.

By noah-cervantes
(77 views)

## Recursive GCD Demo

Recursive GCD Demo. public class Euclid { public static int gcd ( int p , int q ) { if ( q == 0 ) return p ; else return gcd ( q , p % q ); } public static void main ( String [] args ) { System . out . println ( gcd ( 1272 , 216 )); } }.

By schamber
(1 views)

View Println gcd 1272 PowerPoint (PPT) presentations online in SlideServe. SlideServe has a very huge collection of Println gcd 1272 PowerPoint presentations. You can view or download Println gcd 1272 presentations for your school assignment or business presentation. Browse for the presentations on every topic that you want.

## GCD

GCD. CSCI 284/162 Spring 2009 GW. Z m. Definition: a  b ( mod m)  m divides a-b Z m is the “ring” of integers modulo m : 0, 1, 2, …m-1 with normal addition and multiplication, performed modulo m

By tevy (124 views)

## GCD

??. ??????????????GCD(Risa/Asir)?????????????GCD????????. ??. Wu???????????????????????????? (???

By lulu (120 views)

## G—1272

G—1272. 音乐： So Many Things. glm 制作 2012.12.28. 美国国务卿希拉里 · 克林顿将在本届政府任满之后退休。在任职的四年中，她共出访 401 天，访问了 112 个国家和地区，飞行总时长 2084.21 小时，总里程 956,733 英里，成为美国历史上最繁忙的国务卿。一起走进希拉里的四年国务卿生涯。 AFP/Drew Angerer.

By brand (168 views)

## Recursive GCD Demo

Recursive GCD Demo. public class Euclid { public static int gcd ( int p , int q ) { if ( q == 0 ) return p ; else return gcd ( q , p % q ); } public static void main ( String [] args ) { System . out . println ( gcd ( 1272 , 216 )); } }.

By schamber (0 views)

## Recursive GCD Demo

Recursive GCD Demo. public class Euclid { public static int gcd ( int p , int q ) { if ( q == 0 ) return p ; else return gcd ( q , p % q ); } public static void main ( String [] args ) { System . out . println ( gcd ( 1272 , 216 )); } }.

By noah-cervantes (76 views)

## Recursive GCD Demo

Recursive GCD Demo. public class Euclid { public static int gcd ( int p , int q ) { if ( q == 0 ) return p ; else return gcd ( q , p % q ); } public static void main ( String [] args ) { int p = Integer . parseInt ( args [ 0 ]); int q = Integer . parseInt ( args [ 1 ]);

By cai (76 views)

## Euclid Algorithm: GCD

Euclid Algorithm: GCD. GCD:. Input integers a,b;. Step 1:. If a  b. then X  a, Y  b;. else X  b, Y  a;. Step 2:. Z  the remainder of X  Y;. Step 3:. If Z = 0. then the GCD is Y;. else X  Y, Y  Z,. do steps 2, 3 again. Problem Solved. On integers. On what?.

By nova (129 views)

## GCD 介绍

GCD 介绍. Grand Central Dispatch. Agenda. GCD 简介 应用示例 Demo 其他. GCD 简介.

By abraham-clay (113 views)