'3x 2' presentation slideshows

3x 2 - PowerPoint PPT Presentation


Factoring Trinomials a = 1

Factoring Trinomials a = 1

Factoring Trinomials a = 1. Multiplying Binomials (FOIL). Multiply. (x+3)(x+2). Distribute. x • x + x • 2 + 3 • x + 3 • 2. F. O. I. L. = x 2 + 2x + 3x + 6. = x 2 + 5x + 6. Factoring Trinomial Squares.

By oded
(344 views)

Warm Up:

Warm Up:

Graph the following equations: 1) y = -3x + 2 2) y = ½ x – 3 3) 3y = 2x + 6. Warm Up:. 2.0A Notes (Section 1.1 in Textbook). Function families and their transformations. Parent Functions. What is the parent function?.

By hue
(141 views)

Chapter 6

Chapter 6

Chapter 6. Polynomials and Polynomial Functions. 6.1 Using Properties of Exponents. Properties of Exponents. Let a and b be real numbers and let m and n be integers. PRODUCT OF POWERS PROPERTY a m • a n = a m+n POWER OF A POWER PROPERTY ( a m ) n = a mn

By kellsie
(213 views)

Unit 6: Polynomials 6. 1 Objectives The student will be able to:

Unit 6: Polynomials 6. 1 Objectives The student will be able to:

Unit 6: Polynomials 6. 1 Objectives The student will be able to:. 1. multiply monomials. simplify expressions with monomials. Hernandez – Henry Ford High School. A monomial is a. 1. number, 2. variable, or 3. a product of one or more numbers and variables. Examples: 5 y 3x 2 y 3.

By cailean
(136 views)

Algebra

Algebra

Algebra. EXPANDING. - Does 6 × (3 + 5) = 6 × 3 + 6 × 5 ?. YES. 6 × 8 = 18 + 30. 48 = 48. - The removal of the brackets is known as the distributive law and can also be applied to algebraic exressions.

By ada
(79 views)

2.4 二次函数

2.4 二次函数

2.4 二次函数. y=ax 2 +bx+c. 的图象(一). 忆一忆. 二次函数 y=ax 2 与 y=ax 2 +c 的图像有什么异同?. 抛物线. y 轴. a>0 向上 a<0 向下. (0,0). y 轴. (0, c ). 抛物线. a>0 向上 a<0 向下. y=ax 2 +c 是由 y=ax 2 的图像 上下 平移得到的 当 c>0 时,向 上 平移 c 个单位; 当 c<0 时,向 下 平移 ︱ c︱ 个单位。. 函数 y = ax ² + bx + c 的图象. 想一想. 问题:.

By dasan
(154 views)

AB Calculus

AB Calculus

AB Calculus. Midterm Review Problems. A 15 foot ladder is resting against the wall. The bottom is initially 10 feet away from the wall and is being pushed towards the wall at a rate of ¼ ft/sec. How fast is the top of the ladder moving up the wall 12 seconds after we start pushing?.

By ormand
(165 views)

Lesson 7 – Algebra of Quadratics – The Quadratic Formula

Lesson 7 – Algebra of Quadratics – The Quadratic Formula

Lesson 7 – Algebra of Quadratics – The Quadratic Formula. IB Math SL1 - Santowski. Fast Five. Determine HOW many roots the following quadratic functions have: (a) f(x) = x 2 – 6x + 9 (b) f(x) = x 2 – 6x + 5 (c) f(x) = x 2 – 2x + 10 (d) f(x) = -½x 2 + 2x + 4 (e) f(x) = x 2 + 2x + c.

By inari
(121 views)

AF 2.1 & 2.2 Rules of Exponents/Monomials

AF 2.1 & 2.2 Rules of Exponents/Monomials

AF 2.1 & 2.2 Rules of Exponents/Monomials. Monomial. Monomial - is a term such as 4x. Includes a number and one or more variables. Example: 5x, 3x 2. Like Terms .

By neylan
(118 views)

Are You Smarter Than the Faculty?

Are You Smarter Than the Faculty?

Are You Smarter Than the Faculty?. Are You Smarter Than the Faculty?. 150,000. 125,000. Exponential Equations. Logarithmic Equations. 100,000. 75,000. Graphing Rational Function. Rational Equation. 50,000. Inverse Functions. Rational Function. 30,000. 15,000.

By dwight
(82 views)

因式分解复习

因式分解复习

因式分解复习. 因式分解. 把一个多项式化成几个整式的积的形式叫做 因式分解 ,. 即: 一个多项式 →几个整式的积. 分解因式几个特点. (l) 结果一定是积的形式; (2) 每个因式必须是整式; (3) 各因式要分解到不能再分解为止.. 分解因式与多项式乘法关系. 是互逆的关系.一定是恒等变形. 下列变形是否是因式分解?为什么 ? (1)3x 2 y-xy+y=y(3x 2 -x) ; (2)x 2 -2x+3=(x-1) 2 +2 ; (3)x 2 y 2 +2xy-1=(xy+1)(xy-1) ;

By corby
(247 views)

Dividing Polynomials

Dividing Polynomials

Dividing Polynomials. Honors Advanced Algebra Lesson 2-4. Warm-up. Simplify each of the following. 25x 2 / 5x 36x 3 y / 3x 2 (5x 2 + 12x 2 ) / x Challenge: 36x 3 y / 3x 2 y 2. Dividing a Polynomial by a Monomial.

By teal
(194 views)

The Quadratic Formula and FOIL

The Quadratic Formula and FOIL

The Quadratic Formula and FOIL. Algebra I. FOIL. F: First (a+3) (a+2) O: Outer (a+3) (a+2 ) I: Inner (a+3) (a+2 ) L: Last (a+3) (a+2). (a+3) (a+2)=0. (a x a) + (a x 2) + (a x 3) + (3 x 2) =0 a 2 + 2a + 3a + 6 =0 a 2 + 5a + 6 =0. (b+5) (b-4) =0.

By orde
(83 views)

IGCSE Revision Lesson 7

IGCSE Revision Lesson 7

IGCSE Revision Lesson 7. I can use function notation , e.g. f (x) = 3x- 5, f:x--> 3x- 5 to describe simple functions, I can form composite functions as defined by gf(x) = g(f(x)) I can use the notation f -1 (x) to describe their inverses , which I can subsequently find.

By mimis
(108 views)

Linear Functions and Matrices

Linear Functions and Matrices

Linear Functions and Matrices. Linear literal equations. A literal equation in x is an equation whose solution will be expressed in terms of pronumerals rather than numbers. Example: Solve the following for x . a. px − q = r b. ax + b = cx + d Solution:.

By nyla
(103 views)

Chapter 1 – Functions and Their Graphs

Chapter 1 – Functions and Their Graphs

Chapter 1 – Functions and Their Graphs. Functions. Section 1. Introduction to Functions.

By austin
(62 views)

导数及其应用(一)

导数及其应用(一)

导数及其应用(一). ------ 函数单调性与导数的关系 曲周县第一中学 赵永国. ★ 回顾 :在区间 ( a , b ) 内,函数的单调性与其导数有什么样的关系呢? 如果 , 那么函数 y = f ( x ) 在这个区间内单调递增; 如果 ,那么函数 y = f ( x ) 在这个区间内单调递减; 如果 ,那么函数 y= f ( x ) 在这个区间内为常数.. 教材再回首. f ′( x )>0. f ′( x )<0. f ′( x )=0. y. y. y=f′(x). y=f (x). o. x. o. x. y. y.

By janet
(131 views)

Year 8 – Algebraic Fractions

Year 8 – Algebraic Fractions

ζ. Dr Frost. Year 8 – Algebraic Fractions. Objectives: Be able to add and subtract algebraic fractions. Starter. (Click your answer). Are these algebraic steps correct?. 40 - x 3. 40 3. = x + 4. = 2x + 4. . Fail.  . Win!. 2(4) = 5x - 2. 2(4 – 2x) = 3x - 2. . Fail.  .

By skylar
(85 views)

Physics 114B - Mechanics Lecture 9 (Walker: 4.3-5) 2D Kinematics Examples January 21, 2014

Physics 114B - Mechanics Lecture 9 (Walker: 4.3-5) 2D Kinematics Examples January 21, 2014

Physics 114B - Mechanics Lecture 9 (Walker: 4.3-5) 2D Kinematics Examples January 21, 2014. John G. Cramer Professor Emeritus, Department of Physics B451 PAB jcramer@uw.edu. Announcements.

By gili
(168 views)

一次函数的图象 2

一次函数的图象 2

一次函数的图象 2. 三水中学附属初中 郑 敏. 一 . 复习巩固: 在同一坐标系内分别作出一次 函数 y=2x+6 , y=-x , y=-x+6 , y=5x 的图象. 二 . 知识探索 : 四个函数图象中,随着 x 值的增大, y 的值分别如何变化?跟 K 值 有什么关系?. y. y= 5 x. y=-x. 6. 4. 2. o. -6. -4. -2. 2. 4. 6. x. -2. y= 2 x +6. y= - x +6. -4. 三 . 归纳总结:. 一次函数图象的性质:

By jaron
(264 views)

View 3x 2 PowerPoint (PPT) presentations online in SlideServe. SlideServe has a very huge collection of 3x 2 PowerPoint presentations. You can view or download 3x 2 presentations for your school assignment or business presentation. Browse for the presentations on every topic that you want.