1 / 20

Microbial Structure and Function

Andrew J. Pierce. Department of Microbiology, Immunology and Molecular Genetics. University of Kentucky. Microbial Structure and Function. MI720. Fall 2007. DNA Replication. E. coli origin structure. FEMS Microbiol Rev. 2002 Nov;26(4):355-74.

satya
Download Presentation

Microbial Structure and Function

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Andrew J. Pierce Department of Microbiology, Immunology and Molecular Genetics University of Kentucky Microbial Structure and Function MI720 Fall 2007 DNA Replication

  2. E. coli origin structure FEMS Microbiol Rev. 2002 Nov;26(4):355-74. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. Messer W.

  3. Replication origins of different bacteria DnaA boxes are shown as red arrows AT-rich regions are shown in yellow FEMS Microbiol Rev. 2002 Nov;26(4):355-74. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. Messer W.

  4. A-box: KD ~25 nM initial unwinding: DnaA: 28 bp DnaA+SSB: 44-52 bp 5'-TTA/TTNCACA-3' Initial origin melting FEMS Microbiol Rev. 2002 Nov;26(4):355-74. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. Messer W.

  5. dnaA melt duplex dnaB main replicative helicase commitment step for replication fork formation dnaC load dnaB dnaG primase Origin proteins

  6. Initiating DNA replication FEMS Microbiol Rev. 2002 Nov;26(4):355-74. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. Messer W.

  7. E. coli DNA polymerase III holoenzyme 2 DNA polymerase molecules and 9 other accessory factors Annu Rev Biochem. 1995;64:171-200 DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine Kelman Z, O'Donnell M.

  8. Principles of Biochemistry, 3rd Edition Horton HR, Moran LA, Ochs RS, Rawn DJ, Scrimgeour KG Prentice Hall 2002

  9. replication fork replication fork Replicating E. coli genome Principles of Biochemistry, 3rd Edition Horton HR, Moran LA, Ochs RS, Rawn DJ, Scrimgeour KG Prentice Hall 2002

  10. Other E. coli DNA polymerases DNA pol I remove RNA primers and join Okazaki fragments DNA pol II aka: dinA (damage inducible), polB proofread terminal mismatches extend terminal mismatches DNA pol IV aka: dinB (damage inducible) extend terminal mismatches without proofreading DNA pol V aka: umuD'2C translesion synthesis

  11. When Pol III goes wrong… mismatches Mol Microbiol. 2005 Oct;58(1):61-70 DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli Banach-Orlowska M, Fijalkowska IJ, Schaaper RM, Jonczyk P pol IV also used for template slippage

  12. Bigger problems for DNA replication abasic site UV 6-4 photoproduct UV cyclobutane dimer Trends Biochem Sci. 2000 Apr;25(4):189-95 Coping with replication 'train wrecks' in Escherichia coli using PolV, Pol II and RecA proteins Goodman MF.

  13. 1 2 RecA TT RecA* 3 uvrA nucleotide uvrB excision uvrD repair lexA recA ruvA resistance ruvB to UV dinA = polB = pol II dinB = pol IV LexA sulA block cell division umuC UV RecA* umuD mutagenesis umuD' SOS response RecA* Genetics, Vol. 158, 41-64, May 2001 Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli Courcells J, Khodursky A, Peter B, Borwn PO, Hanawalt PC

  14. Pol II helping out Proc Natl Acad Sci USA 2001 Jul 17;98(15):8350-4 Roles of DNA polymerases V and II in SOS-induced error-prone and error-free repair in Escherichia coli Pham P, Rangarajan S, Woodgate R, Goodman MF

  15. Translesion synthesis polV: umuD'2C Proc Natl Acad Sci USA 2001 Jul 17;98(15):8350-4 Roles of DNA polymerases V and II in SOS-induced error-prone and error-free repair in Escherichia coli Pham P, Rangarajan S, Woodgate R, Goodman MF

  16. E. coli genome Microbiol Mol Biol Rev. 2005 Sep;69(3):501-26 Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex Neylon C, Kralicek AV, Hill TM, Dixon NE

  17. Replication termination TerF TerB TerC TerA TerD TerE Mol Microbiol. 1999 Mar;31(6):1611-8 Termination of DNA replication of bacterial and plasmid chromosomes Bussiere DE, Bastia D

  18. Tus - Ter 5'-TTAGTTACAACATNCA-3' Mol Microbiol. 1999 Mar;31(6):1611-8 Termination of DNA replication of bacterial and plasmid chromosomes Bussiere DE, Bastia D

  19. Tus - Ter and DNA polymerase III Microbiol Mol Biol Rev. 2005 Sep;69(3):501-26 Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex Neylon C, Kralicek AV, Hill TM, Dixon NE

  20. Replication fork disassembly Microbiol Mol Biol Rev. 2005 Sep;69(3):501-26 Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex Neylon C, Kralicek AV, Hill TM, Dixon NE

More Related