1 / 29

適応的重みを有する 多目的最適化のための分散遺伝的アルゴリズム

適応的重みを有する 多目的最適化のための分散遺伝的アルゴリズム. 廣安 知之,○上浦 二郎,三木 光範,渡邉 真也 同志社大学. 多目的最適化問題. 互いに競合する複数の目的が存在する最適化問題. ・求めるべき解が複数存在する → ある目的を 改善 するために,   他の目的を 改悪 せざるを   得ない解. ・ 非劣解(集合) 探索の過程で得られたどの解にも 優越 されない解(の集合). ・ パレート最適解(集合)  定義された解空間のどの解にも 優越 されない解(の集合). 遺伝的アルゴリズムを用いた多目的最適化. ・遺伝的アルゴリズム

sasha
Download Presentation

適応的重みを有する 多目的最適化のための分散遺伝的アルゴリズム

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 適応的重みを有する多目的最適化のための分散遺伝的アルゴリズム適応的重みを有する多目的最適化のための分散遺伝的アルゴリズム 廣安 知之,○上浦 二郎,三木 光範,渡邉 真也 同志社大学

  2. 多目的最適化問題 互いに競合する複数の目的が存在する最適化問題 ・求めるべき解が複数存在する→ある目的を改善するために,   他の目的を改悪せざるを   得ない解 ・非劣解(集合) 探索の過程で得られたどの解にも 優越されない解(の集合) ・パレート最適解(集合)  定義された解空間のどの解にも 優越されない解(の集合) 同志社大学

  3. 遺伝的アルゴリズムを用いた多目的最適化 ・遺伝的アルゴリズム  → 多点探索による最適化手法  → 求める解が複数存在する多目的最適化に適する  → 多目的遺伝的アルゴリズム • MOGA : Fonseca (1993) • NPGA2 : Erickson, Mayer, Horn (2001) • SPEA2 : Zitzler (2001) • NSGA-II : Deb, Goel (2001) など多数 同志社大学

  4. 従来手法(SPEA2, NSGA-II)の探索のアプローチ ・パレート的アプローチ 解の優越関係をもとにした適合度の割り当て → すべての目的を同等に評価 → ある目的を重視した解を得にくい 同志社大学

  5. よい多目的最適化手法とは 1.パレート解に近い非劣解を得る 2.多様な非劣解を得る 従来手法 (NSGA-II, SPEA2)は...  ・高精度の非劣解を得るための複数のメカニズム    → パレート解に近い非劣解を得ることができる  ・パレート的アプローチ    → ある目的を重視した非劣解を得にくい 多様かつ高精度の非劣解を得られる手法を提案 同志社大学

  6. 提案手法 : 重み適応型遺伝的アルゴリズム Adaptive Weighted Genetic Algorithm : AWGA 特徴 • 分割母集団モデル:複数のサブ母集団(島)からなる母集団 • 重み分散:各島に異なる重みベクトル • 近傍移住:重みベクトルの近い島間で個体交換 • 重み変化:重みベクトルの変化 同志社大学

  7. 分割母集団モデル 分割母集団モデル 重み分散 重み分散 近傍移住 近傍移住 重み変化 重み変化 提案手法(AWGA)の概要 同志社大学

  8. 母集団分割モデル:分散遺伝的アルゴリズム ・複数のサブ母集団(島)によって母集団を構成 → 移住:島間の個体交換 → 各島に異なるパラメータ設定を行うことで,  各島に異なる特徴を与えることが可能(三木 ‘00) → 単目的最適化では性能が向上   多目的最適化では性能が悪化(廣安 ‘00) 同志社大学

  9. 重み分散 ・各島は異なる重みベクトル → 各島で単目的最適化,全体で多目的最適化 → 各島の探索範囲が限定→少ない個体数で探索可能 ・初期値として0.0から1.0までを  均等に割り当てる → 探索中に適応的に変化 例)2 目的, 5 島 同志社大学

  10. 重み変化 ・重みベクトルを探索中に変化させる → 探索が疎の部分を重点的に探索 → 各島の初期収束を抑制可能 重みベクトルと目的関数値を考慮して重みを変化 → 偏りなく分布する非劣解を得ることが可能 同志社大学

  11. 近傍移住 ・近い重みベクトルを持つ島間で個体を交換 → 非劣解が非劣解フロントの一部に偏ることを防ぐ 同志社大学

  12. アーカイブの使用による非凸型フロントへの対応アーカイブの使用による非凸型フロントへの対応 ・重みでは非凸型のフロント上の非劣解を得ることはできない 凸型 非凸型 ・エリート保存戦略として,適合度の高い個体だけでなく  非劣解をもアーカイブに保持(非劣解アーカイブ)  → 探索途中に得られた解は淘汰されない  → 選択圧を下げる(トーナメントサイズを小さくする)    ことにより,非劣解が選ばれる可能性が高くする 同志社大学

  13. 提案手法(AWGA)のまとめ 同志社大学

  14. 数値実験 ・様々なパレート最適フロントを持つ問題への適用 →非凸を含む様々なパレート最適フロントにおいて   提案手法は非劣解を得ることができる ・他手法との性能比較 →既存手法(NSGA-II)に対する提案手法の優位性 同志社大学

  15. 様々なパレート最適フロントを持つ問題への適用様々なパレート最適フロントを持つ問題への適用 • 対象問題 ZDT1-6 同志社大学

  16. 様々なパレート最適フロントを持つ問題への適用様々なパレート最適フロントを持つ問題への適用 ・個体数 50,島数 10,世代数 1000 ・30試行で得られたすべての非劣解集合 同志社大学

  17. 既存手法との比較 • 比較対象 NSGA-II • 対象問題 KUR, 750荷物3目的ナップサック問題 (KP750-3) • 比較方法 Ratio of Non-dominated Individuals of Two Sets RNI-2の例 手法2 手法1 → 手法2 3/7 手法1 4/7 同志社大学

  18. 既存手法との比較 (KUR) ・個体数 100,島数 10,世代数 1000,30試行 AWGA NSGA-II AWGA 70% NSGA-II 30% RNI-2 提案手法が非劣解の幅広さ,精度ともに優れている 同志社大学

  19. 既存手法との比較実験 (KP750-3) ・個体数 300,島数 30,評価数 1,000,000,30試行 AWGA NSGA-II NSGA-II 40% AWGA 60% RNI-2 提案手法が幅広さ,精度ともに勝る 同志社大学

  20. 発表のまとめ 1:提案手法 • 重み適応型遺伝的アルゴリズム(Adaptive Weighted Genetic Algorithm) • 分割母集団モデル → 並列化可能 • 重み分散 • 重み変化 • 近傍移住 • アーカイブの利用 同志社大学

  21. 発表のまとめ 2:実験結果 • 様々なパレート最適フロントへの適用実験 • 非凸型パレート最適フロントにおいても探索可能 • 既存手法(NSGA-II)との比較実験 • 幅広さ,精度ともに,既存手法よりもよい解を得た 多様,高精度の非劣解を得る 重み適応型遺伝的アルゴリズムは有効 同志社大学

  22. Fin. 同志社大学

  23. 適応変化(トーナメントサイズ) ・トーナメントサイズが移住の際に適応的に変化 → 非凸型の非劣解フロントを探索可能とするため ・例)島Bのトーナメントサイズの適応変化 Case 1 Case 2 重みが高いほど良い目的値 重みが高くとも同じ目的値 重みが機能している 重みが機能していない(非凸)  トーナメントサイズを+1  (最大トーナメントサイズは初期値)  トーナメントサイズを-1  (最小トーナメントサイズは 1 ) 同志社大学

  24. 4 / 14 10 / 14 長い探索による非劣解集合の改善 • KP750-3 は提案手法が劣る • RNI-2は精度の悪い幅の広い非劣解集合よりも精度の良い幅の狭い非劣解集合を評価 長い探索による 非劣解集合の改善を検証する 解評価数   600,000 ↓ 解評価数  1,000,000 同志社大学

  25. 長い探索による非劣解集合の改善 (KP750-3) ・個体数 300,島数 30,評価数 1,000,000,30試行 長い探索を行うことにより精度の良い,幅広い非劣解集合を 得ることができる 同志社大学

  26. 提案手法(AWGA)の流れ 1.個体群,重みベクトルの初期化 2.複製選択 ・個体群,エリートアーカイブ,非劣解アーカイブから トーナメント選択により親個体を 2個体抽出 3.近傍移住,適応変化 ・複製選択で抽出した個体を移住 4.子個体生成 ・交叉,突然変異 5.複製選択 ・親+子個体群からランダムに2個体を選択し,  個体群の適合度の低い個体を置換 6.終了判定 ・終了しない場合は世代を+1して 2へ戻る 同志社大学

  27. 目的 :島3の近傍島は島2と4 :目的 近傍移住 ・近い重みベクトルを持つ島間で個体を交換 ・重みベクトル、トーナメントサイズの適応変化 → 非劣解が非劣解フロントの一部に偏ることを防ぐ 手順1.重みベクトルの各要素を基準に近傍島を定義 手順2.2つの近傍島から個体を受け取る 近傍島が1島の場合 その島から個体を受け取る 手順3.重みベクトル,トーナメントサイズの適応変化 同志社大学

  28. アーカイブの利用 ・適合度の高い個体をアーカイブに保持(エリートアーカイブ) ・非劣解をアーカイブに保持(非劣解アーカイブ) → 探索の効率上昇 → 非凸型フロントへの対応 ※ アーカイブに格納可能な エリート,非劣解の数は パラメータ 同志社大学

  29. 重み変化 ・重みベクトルが移住の際に適応的に変化 → 非劣解が非劣解フロントの一部に偏ることを防ぐ → 各島の初期収束を抑制可能 → 探索効率の低下 ・例)島Bの目的 の重み変化 島Bと島Aの重み差 >島Bと島Cの重み差 →島Bの重みを島Aに近づける 正規乱数により島Bの重みを更新 平均:(島Bの重み)+α(島A,Bの重み差) 標準偏差:β(島A,Bの重み差) 島A, Cは島Bの近傍島 同志社大学

More Related