1 / 20

Che5700 陶瓷粉末處理

Che5700 陶瓷粉末處理. Particle Packing. 陶瓷成型之際, 必然牽涉到粉末堆積的科學與技術; 表達堆積效果: packing density and/or porosity 顯然會影響堆積的因素: particle size and distribution, particle shape, resistance of particles to pressure (deformation; binder effect), flow resistance (friction between particles)

santos
Download Presentation

Che5700 陶瓷粉末處理

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Che5700 陶瓷粉末處理 Particle Packing • 陶瓷成型之際, 必然牽涉到粉末堆積的科學與技術; • 表達堆積效果: packing density and/or porosity • 顯然會影響堆積的因素: particle size and distribution, particle shape, resistance of particles to pressure (deformation; binder effect), flow resistance (friction between particles) • For uniform spheres: five different packing arrangements – cubic, orthorhombic, tetragonal, pyramidal, tetrahedral等 • 堆積緊密程度各有不同; coordination number越高, 堆積越緊密, 理論上最高為74%.

  2. In theory, we can obtain ordered packing of mono-disperse particles; in reality, it is often to get packing as shown above (small range of ordering)

  3. Che5700 陶瓷粉末處理 Packing Density and Pore Size

  4. Che5700 陶瓷粉末處理 Packing Characteristics • Tortuosity o: for cubic packing o= 1.0; tetrahedral packing o= 1.3 • Number of particle contact Nc = 3 (PF) (CN)/( a3) • PF = packing fraction; CN = coordination number •  for nonregular packing Nc = 3 (1-)/(a3); since CN ~ / (usually between 6 – 10) • Container wall effect (on packing): insignificant when container dia./particle dia. > 10 • 使用兩種粒徑粒子時, 較小的粒子可以填在大粒子堆積的孔洞中, 因而增加堆積密度

  5. Che5700 陶瓷粉末處理 Furnas Model • 簡而言之, 若有三種粒子堆積: • PFmax = PFc + (1- PFc) PFm + (1- PFc)(1- PFm) PFf • f i, w = Wi/W total • Wc = PFcc; medium and fine 亦同 • 較細小的粒子必須小到一定程度後, size ratio > 7, 才會有效增加堆積密度 • 工業上也多採取混合兩種以上粒徑的粒子, 達到高密度堆積, 降低對燒結緻密的要求.

  6. 圖中直線代表粒子粒徑比值無限大的理論值; • 最密堆積發生於小粒子剛好可以填滿大粒子所生成的孔隙 (volume fraction for fines ~ 26% or porosity from large particles ~26%) • 實際上因為粒子粒徑比例不會太大, 所以混合後堆積密度曲線, 最高點會偏向比較中間

  7. Che5700 陶瓷粉末處理 Packing of Continuous Distribution • 例如log normal distribution 為常見的粒徑分布, 理論計算顯示, random packing情況下, LN 分布的geometric standard deviation 越大, 則其(球形粒子)最緊密堆積所對應的孔洞, 也會隨之增加; • Andreasen cumulative distribution (1): 一般n = 0.33 – 0.5; 經驗顯示1/n 增加堆積密度會增加 • Zheng modified distribution (2): 多一個參數, amin

  8. 取自JS Reed, 1995; 通常堆積密度在60-69%之間; 實際的粒子未必為球形, 且未必實心, 都會影響堆積密度

  9. 實際的粒徑分布所堆積的結果, 樣品為calcined Bayer alumina; not very easy to rationalize

  10. Che5700 陶瓷粉末處理 Hindered Packing • Including external and internal factors: • Bridging of particles and agglomerates with rough surface of walls (mechanical vibration [– tap density], lubrication, large force causing particle fracture may improve somewhat;) • Coagulation, adhesion between particles also retard particle motion and hence packing into dense structure • High aspect ratio often produce high porosity • Adsorbed binder molecule also hinder particle movement

  11. Che5700 陶瓷粉末處理 Ordered Structure in Suspension • For monodisperse particle systems: particle interaction + gravity force  ordered structure (有所謂order-disorder phase transition問題: a thermodynamic and mechanical equilibrium problem) • Defects: point defect (vacancy), line defect (dislocations), planar defects (grain boundary), volume defects (cracks); • Point defect: 可以由熱力學理論推算之; 其他類型缺陷則與製程條件有密切關係 • Measurement of ordered domain size: Scherer equation (peak broadening)  = 半高寬 = k/(L cos) = full width at half height; k = constant ~ 0.9

  12. 本圖取自TA Ring, 1996; • Measurement of ordered array structure: light diffraction (iridescence) n = 2 d sin  於是由繞射峰可以計算結構尺寸 (d)

  13. Optimizing Particle Packing in Powder Consolidation • source: Am. Cer. Soc. Bull., 106-111, Aug. 1999. • Key question: 如何設計粒子的粒徑分布, 得到最佳堆積? • 基本準則: 選擇小粒子粒徑可以填入大粒子堆出來的孔洞 • 使用下式(Andreasen eq.)表達粒子粒徑分佈: CPFT/100 = [D/DL]q where CPFT = cumulative percent finer than diameter D, DL = maximum size of this batch, q = distribution modulus

  14. Alfred model 修正前式為 CPFT/100 = [(Dq – Dsq)/(DLq – Dsq)], where Ds = smallest size of this batch • 經驗顯示 q = 0.37 會提供最大堆積密度 • 實驗樣品: fused alumina, 研磨時間不同得到不同分佈粒徑粒子, 然後利用軟體得到配方, 使之fit either Andreasen or Alfred model 分佈; 其中利用1.5, 21A, 99A, 99B 得到 Alfred distribution; 利用1.5, 144 得到 Andreasen distribution 粒子 • Andreasen powder 比表面積大些 7.5 m2/g vs 4.76 m2/g for Alfred • 使用三種方式成型: slip casting, uniaxial pressing, isostatic pressing

  15. Results & Conclusion • 一種主要粒子決定堆積架構, 其他視為填料; • 理論計算預測最低孔隙度: Alfred 13.9%; Andreasen 16.5% • 實驗結果顯示: 壓力成型時, 大致符合; 但slip casting 結果相反; 表示粒徑分佈只是影響堆積效果的因素之一 • 實際堆積密度低於理論預測: 因為粒子運動受到限制, and/or 粒子形狀因素 • Alfred 粒子之主要結構控制粒徑似乎大些, its pore size 也大些; 在slip casting時會出現 packing gradient

More Related