1 / 52

CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 0 - Intro

CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 0 - Intro Mälardalen University 2005. Content Adminstrivia Mathematical Preliminaries Countable Sets (Uppräkneliga mängder) Uncountable sets (Överuppräkneliga mängder). Lecturer & E xami ner

saad
Download Presentation

CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 0 - Intro

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 0 - Intro Mälardalen University 2005

  2. Content • Adminstrivia • Mathematical Preliminaries • Countable Sets (Uppräkneliga mängder) • Uncountable sets (Överuppräkneliga mängder)

  3. Lecturer&Examiner • Gordana Dodig-Crnkovic

  4. Teaching Assistent • Andreas Ermedahl

  5. http://www.idt.mdh.se/kurser/cd5560/05_04 visit home page regularly! Course Home Page

  6. How Much Work? 20 hours a week for this type of course (norm) 4 hours lectures 2 hours exercises 14 hours own work a week!

  7. Mathematical Preliminaries

  8. Sets • Functions • Relations • Proof Techniques • Languages, Alphabets and Strings • Strings & String Operations • Languages & Language Operations

  9. SETS A set is a collection of elements We write

  10. Set Representations • C = { a, b, c, d, e, f, g, h, i, j, k } • C = { a, b, …, k } • S = { 2, 4, 6, … } • S = { j : j > 0, and j = 2k for some k>0 } • S = { j : j is nonnegative and even } finite set infinite set

  11. A = { 1, 2, 3, 4, 5 } U A 6 8 2 3 1 7 4 5 9 10 • Universal Set: All possible elements • U = { 1 , … , 10 }

  12. Set Operations • A = { 1, 2, 3 } B = { 2, 3, 4, 5} • Union • A U B = { 1, 2, 3, 4, 5 } • Intersection • A B = { 2, 3 } • Difference • A - B = { 1 } • B - A = { 4, 5 } B A U A-B

  13. Complement • Universal set = {1, …, 7} • A = { 1, 2, 3 } A = { 4, 5, 6, 7} 4 A A 6 3 1 2 5 7 A = A

  14. { even integers } = { odd integers } Integers 1 odd 0 5 even 6 2 4 3 7

  15. DeMorgan’s Laws A U B = A B U A B = A U B U

  16. Empty, Null Set: = { } S U = S S = S - = S - S = U = Universal Set

  17. Subset A = { 1, 2, 3} B = { 1, 2, 3, 4, 5 } U A B Proper Subset: B U A B A

  18. Disjoint Sets A = { 1, 2, 3 } B = { 5, 6} A B = U A B

  19. Set Cardinality For finite sets A = { 2, 5, 7 } |A| = 3

  20. Powersets A powerset is a set of sets S = { a, b, c } Powerset of S = the set of all the subsets of S 2S = { , {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} } Observation: | 2S | = 2|S| ( 8 = 23 )

  21. Cartesian Product A = { 2, 4 } B = { 2, 3, 5 } A X B = { (2, 2), (2, 3), (2, 5), ( 4, 2), (4, 3), (4, 5) } |A X B| = |A| |B| Generalizes to more than two sets A X B X … X Z

  22. PROOF TECHNIQUES • Proof by construction • Proof by induction • Proof by contradiction

  23. 2 2 3 1 1 4 0 0 5 3 Construction We define a graph to be k-regular if every node in the graph has degree k. Theorem. For each even number n > 2 there exists 3-regular graph with n nodes. n = 6 n = 4

  24. Proof by Construction Construct a graph G = (V, E) with n > 2 nodes. V= { 0, 1, …, n-1 } E = { {i, i+1}  for 0  i  n-2}  {{n-1,0}} (*)  {{i, i+n/2 for 0  i  n/2 –1} (**) The nodes of this graph can be written consecutively around the circle. (*) edges between adjacent pairs of nodes (**) edges between nodes on opposite sides END OF PROOF

  25. Induction We have statements P1, P2, P3, … • If we know • for some k that P1, P2, …, Pk are true • for any n k that • P1, P2, …, Pn imply Pn+1 • Then • Every Pi is true

  26. Proof by Induction • Inductive basis • Find P1, P2, …, Pk which are true • Inductive hypothesis • Let’s assume P1, P2, …, Pn are true, • for any n  k • Inductive step • Show that Pn+1 is true

  27. L(0) = 1 L(3) = 8 Example TheoremA binary tree of height n has at most 2n leaves. Proof let L(i) be the number of leaves at level i

  28. We want to show: L(i)  2i • Inductive basis • L(0) = 1 (the root node) • Inductive hypothesis • Let’s assume L(i)  2i for all i = 0, 1, …, n • Induction step • we need to show that L(n + 1)  2n+1

  29. Induction Step Level hypothesis: L(n)  2n n n+1

  30. Induction Step Level hypothesis: L(n)  2n n n+1 L(n+1)  2 * L(n)  2 * 2n = 2n+1 END OF PROOF

  31. Inductionsbevis: Potensmängdens kardinalitet Påstående:En mängd med n element har 2n delmängder • Kontroll • Tomma mängden {} (med noll element) har bara en delmängd: {}. • Mängden {a} (med ett element) har två delmängder: {} och {a}

  32. Påstående:En mängd med n element har 2n delmängder • Kontroll (forts.) • Mängden {a, b} (med två element) har fyra delmängder: {}, {a}, {b} och {a,b} • Mängden {a, b, c} (med tre element) har åtta delmängder: {}, {a}, {b}, {c} och {a,b}, {a,c}, {b,c}, {a,b,c} • Påstående stämmer så här långt.

  33. Bassteg • Enklaste fallet är en mängd med noll element (det finns bara en sådan), som har 20 = 1 delmängder.

  34. Induktionssteg • Antag att påståendet gäller för alla mängder med k element, dvs antag att varje mängd med k element har 2k delmängder. • Visa att påståendet i så fall också gäller för alla mängder med k+1 element, dvs visa att varje mängd med k+1 element har 2k+1 delmängder.

  35. Vi betraktar en godtycklig mängd med k+1 element. Delmängderna till mängden kan delas upp i två sorter: • Delmängder som inte innehåller element nr k+1:En sådan delmängd är en delmängd till mängden med de k första elementen, och delmängder till en mängd med k element finns det (enligt antagandet) 2k stycken.

  36. Delmängder som innehåller element nr k+1:En sådan delmängd kan man skapa genom att ta en delmängd som inte innehåller element nr k+1 och lägga till detta element. Eftersom det finns 2k delmängder utan element nr k+1 kan man även skapa 2k delmängder med detta element. • Totalt har man 2k +2k = 2. 2k= 2k+1 delmängder till den betraktade mängden. • END OF PROOF • (Exempel från boken: Diskret matematik och diskreta modeller, K Eriksson, H. Gavel)

  37. Proof by Contradiction • We want to prove that a statement P is true • we assume that P is false • then we arrive at a conclusion that contradicts our assumptions • therefore, statement P must be true

  38. Example • Theorem is not rational • Proof • Assume by contradiction that it is rational • = n/m • n and m have no common factors • We will show that this is impossible

  39. = n/m 2 m2 = n2 n is even n = 2 k Therefore, n2 is even m is even m = 2 p 2 m2 = 4k2 m2 = 2k2 Thus, m and n have common factor 2 Contradiction! END OF PROOF

  40. Languages, Alphabets and Strings

  41. Languages • defined over an alphabet: A language is a set of strings A String is a sequence of letters • An alphabet is a set of symbols

  42. Alphabets and Strings • We will use small alphabets: Strings

  43. Operations on Strings

  44. = w a a a L x abba 1 2 n = v b b b y  bbbaaa L 1 2 m String Operations Concatenation (sammanfogning) xy abbabbbaaa

  45. Reverse (reversering) Example: Longest odd length palindrome in a natural language: saippuakauppias (Finnish: soap sailsman)

  46. Length: String Length Examples:

  47. Empty String • A string with no letters: • (Also denoted as ) • Observations:

  48. Substring (delsträng) • Substring of string: • a subsequence of consecutive characters • String Substring

  49. prefix suffix Prefix and Suffix • Suffixes Prefixes

  50. (String repeated n times) Repetition n = • Example: • Definition: w ww... w } n

More Related