1 / 53

ALKANI

ryder
Download Presentation

ALKANI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. ALKANI

    4. Struktura metana

    5. Orbitalni prikaz metana i etana

    6. Figure Number: 02-00-002 Title: Simple Alkanes Caption: Names, Kekulé structures, condensed structures, and ball-and-stick structures of molecules of the first four straight-chain alkanes. Notes: Simple alkanes have the general formula CnH2n+2. Figure Number: 02-00-002 Title: Simple Alkanes Caption: Names, Kekulé structures, condensed structures, and ball-and-stick structures of molecules of the first four straight-chain alkanes. Notes: Simple alkanes have the general formula CnH2n+2.

    12. III. Fizikalna svojstva topljivost: hidrofobni, slabo polarni slabe van der Waalsove veze gustoca: manja od 1 g/mL, povecava s velicinom alkana vrelišta rastu s porastom broja C atoma povišenje tališta ovisi o slaganju u kristalnoj rešetki izomer s ravnim lancem ima više vrelište od izomera s razgranatim lancem

    13. C1-C4: plinovi (prirodni plin) C5-C6: petroleter C6-C7: ligroin (laki benzin) C5-C10: prirodni benzin C12-C81: petrolej (kerozin) C12 i viši: plinsko ulje (dizelsko) C20-C34: maziva ulja

    15. Vrelišta alkana

    16. Tališta alkana

    17. IV. Konformacije alkana Konformacije etana zvjezdasta konformacija posjeduje nižu energiju diedarski kut = 60 o

    20. Konformacije propana povecanje torzijske napetosti zbog vece metilne skupine

    21. Konformacije butana najviša energija kada su metilne skupine zasjenjene stericke smetnje diedarski kut = 0 o

    22. Konformacije butana najniža je energija kada su metilne skupine anti diedarski kut = 180 o

    23. Konformacije butana antiklinalna (zasjenjena) više energije od iste zvjezdaste diedarski kut = 120 o

    24. Konformacijska analiza

    25. V. Priprava alkana Redukcije Hidrogenacija alkena Hidrogenacija alkina Redukcija alkil halogenida hidridima Redukcija alkil halogenida s Zn u kiseloj sredini Grignardova sinteza Reakcije sparivanja Wurtz-ova reakcija Corey-House-ova reakcija sparivanja

    26. Redukcija Hidrogenacija alkena Hidrogenacija alkina

    27. Redukcija Redukcija alkil halogenida hidridima Redukcija alkil halogenida s Zn u kiseloj sredini

    28. Grignardova sinteza

    29. Reakcije sparivanja Wurtz-ova reakcija

    30. Reakcije sparivanja Corey-House sparivanje (Gilman-ov reagens)

    31. VI. Reakcije alkana Sagorijevanje

    32. Reaktivnost alkana tzv. parafini (spojevi koji posjeduju niski afinitet prema drugim spojevima) jer su vrlo nereaktivni halogeniranje je pri povišenoj temperaturi i prisutnosti svjetla obicno nekontrolirano

    34. Mehanizmi kloriranja i bromiranja alkana

    37. Brzina kloriranja

    39. Figure Number: 09-01a,b Title: Figure 9.1 Caption: Reaction coordinate diagrams for the abstraction of primary, secondary, and tertiary hydrogens by chlorine and bromine atoms. Notes: Since the chlorine abstractions are exothermic, their transition states resemble reactants, and their relative stabilities do not fully reflect the relative stabilities of the product alkyl radicals. The bromine abstractions are endothermic, so the bromine-abstraction transition states resemble product alkyl radicals. Thus, the relative stabilities of the bromine-abstraction transition states resemble the relative stabilities of the alkyl radical products. Thus, the activation energies (and relative speeds) of bromine-abstraction reactions more closely reflect alkyl radical stabilities than do the activation energies of chlorine-abstraction reactions.Figure Number: 09-01a,b Title: Figure 9.1 Caption: Reaction coordinate diagrams for the abstraction of primary, secondary, and tertiary hydrogens by chlorine and bromine atoms. Notes: Since the chlorine abstractions are exothermic, their transition states resemble reactants, and their relative stabilities do not fully reflect the relative stabilities of the product alkyl radicals. The bromine abstractions are endothermic, so the bromine-abstraction transition states resemble product alkyl radicals. Thus, the relative stabilities of the bromine-abstraction transition states resemble the relative stabilities of the alkyl radical products. Thus, the activation energies (and relative speeds) of bromine-abstraction reactions more closely reflect alkyl radical stabilities than do the activation energies of chlorine-abstraction reactions.

    46. Stereokemija halogeniranja

    48. Figure Number: 09-01-13 Title: Stereochemistry of Radical Substitution Reactions Caption: If a reactant does not have an asymmetric carbon, and a radical substitution reaction forms a product with an asymmetric carbon, a mixture of enantiomers is produced. Notes: In a radical substitution reaction, a radical intermediate is produced which can abstract atoms to form a new bond from either of two possible orientations, giving rise to either of two possible enantiomers.Figure Number: 09-01-13 Title: Stereochemistry of Radical Substitution Reactions Caption: If a reactant does not have an asymmetric carbon, and a radical substitution reaction forms a product with an asymmetric carbon, a mixture of enantiomers is produced. Notes: In a radical substitution reaction, a radical intermediate is produced which can abstract atoms to form a new bond from either of two possible orientations, giving rise to either of two possible enantiomers.

    49. Figure Number: 09-01-03UN Title: Halogen Molecules Caption: Space-filling models of diatomic halogen molecules. Notes: As the halogen atoms grow in size, they form longer, weaker bonds with carbon atoms and other halogen atoms.Figure Number: 09-01-03UN Title: Halogen Molecules Caption: Space-filling models of diatomic halogen molecules. Notes: As the halogen atoms grow in size, they form longer, weaker bonds with carbon atoms and other halogen atoms.

    51. MO alilnog radikala

    53. Stabilizacija radikala

More Related