slide1
Download
Skip this Video
Download Presentation
Kinks, Nodal Bilyaer Splitting, and Interband Scattering in YBCO

Loading in 2 Seconds...

play fullscreen
1 / 54

Kinks, Nodal Bilyaer Splitting, and Interband Scattering in YBCO - PowerPoint PPT Presentation


  • 130 Views
  • Uploaded on

Kinks, Nodal Bilyaer Splitting, and Interband Scattering in YBCO. Sergey V. Borisenko. “Self-organized Strongly Correlated Electron Systems” 29 May, 2006 , Seillac, France. THANKS TO:. Alexander Kordyuk. Martin Knupfer. Andreas Koitzsch. Jörg Fink. Volodymyr Zabolotnyy. Bernd Büchner.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Kinks, Nodal Bilyaer Splitting, and Interband Scattering in YBCO' - royal


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1
Kinks, Nodal Bilyaer Splitting, and

Interband Scattering in YBCO

Sergey V. Borisenko

“Self-organized Strongly Correlated Electron Systems”

29 May, 2006, Seillac, France

slide2
THANKS TO:

Alexander Kordyuk

Martin Knupfer

Andreas Koitzsch

Jörg Fink

Volodymyr Zabolotnyy

Bernd Büchner

Dmitriy Inosov

Jochen Geck

Roland Hübel

slide3
THANKS TO:

Bernhard Keimer, Chengtian Lin, Vladimir Hinkov MPI Stuttgart

Yoichi Ando, Shimpei Ono, Seiki Komiya CRIEPI Tokyo

Andreas Erb WMI Garching

Helmut Berger EPFL Lausanne

Rolf Follath BESSY

Sorin Chiuzbaian, Luc Patthey SLS

Andrey Chubukov U Wisconsin

Ilya Eremin MPI Dresden

Money

DFG (Forschergruppe 538)

BMBF ("Highest resolution ARPES")

EU (LSF Programme)

slide5
LEED patterns

Pb-BSCCO

YBCO

LSCO

slide6
Energy

w

W

w

Recipe

Bare band structure

Auger decay

Bosons

slide7
Self-energy

Energy

Energy

slide8
A

B

С

Agreement with experiment

B

A

C

Energy

Inosov, Zabolotnyy et al.

slide9
G (w,k)

INS

RAMAN

STM

slide10
LEED patterns

Pb-BSCCO

YBCO

LSCO

slide11
Chain states

Fermi surface of YBCO

O. K. Andersen et al.

slide16
S

Г

X

Y

S

Some of the previous work on YBCO

Chain/SS

Chain

antibonding

bonding

K. Gofron et al., J. Phys. Chem. Solids 54, 1193 (1993)

?

M. C. Schabel et al., Phys. Rev. B 57, 6090 (1998)

SC peak

“hump”

Surf. State

Chain

D. H. Lu et al., Phys Rev. Lett 86, 4370(2001)

D. H. Lu et al., Phys Rev. Lett 86, 4370(2001)

slide18
19 meV

Electronic structure of YBCO

slide19
Temperature dependence.

V. Zabolotnyy et al.

slide20
Superconducting component

antibonding

bonding

overdoped

sum

experiment

superconducting

// Model: =0.5*(ABSC + ABN) + BBSC + BBN + Background

V. Zabolotnyy et al.

slide21
e-

e-

d=0.30

d=0.16

slide42
d=0.16

d=0.16

Edwards et al, Phys. Rev. Lett. 70, 2967 (1992)

d=0.02

d=0.30

slide44
Momentum dependence of the renormalization in YBCO-6.6

Momentum, kx

Momentum, ky

V. Zabolotnyy et al.

slide46
Momentum dependence in Ca-YBCO

200510 SLS\Ca-YBCO

Momentum, kx

Momentum, ky

Experiment

Model

V. Zabolotnyy et al.

slide47
Temperature dependence in Ca-YBCO.

2005 10 SLS\Ca-YBCO

files 014-21

V. Zabolotnyy et al.

slide48
hn=50eV

hn=53eV

hn=55eV

Kinks in YBCO: nodal direction

PRL 06 c

slide49
Kinks in YBCO: nodal direction

Momentum (Å-1)

PRL 06 c

slide50
P. Bourges, B. Keimer et al.

Kinks in YBCO as a function of doping

PRL 06 c

slide51
YBCO 30 K

Kordyuk et al. Cond-mat/0510760

slide52
Evidence for the strong

interband scattering in YBCO

PRL 06 b, PRL 06 c

slide53
Conclusions

Methodological conclusions:

ARPES spectra of YBCO consist of two components: a strongly overdoped one (top bilayer) and

a nominally doped one (second bilayer)

There are no other misterious „surface states“

It is possible to enhance the nominally doped component (photon energy, polarization, geometry, Ca-doping)

Physical conclusions:

Fermi surface of YBCO is consistent with LDA predictions (bilayer splitting, chain states, shape, topology)

Renormalization below Tc is strong and anisotropic

Superconducting gap has the absolute values comparable to BSCCO and similar anisotropy

Kink energy is doping dependent and tracks that of the magnetic excitations‘ spectrum

Strong interband scattering, as in BSCCO, indicates that the scattering mediators are the spin fluctuations

thanks to
Thanks to:

ARPES of HTSC, Leibniz-IFW Dresden:

Alexander Kordyuk, Andreas Koitzsch, Vladimir Zabolotnyy, Jochen Geck, Dmitriy Inosov, Roland Hübel, Jörg Fink, Martin Knupfer, Bernd Büchner

Synchrotron Light

Rolf Follath BESSY BerlinLuc Patthey SLS Villigen

Collaboration

Bernhard Keimer, Vladimir Hinkov, Chengtian LinMPI Stuttgart

Yoichi Ando, Shimpei Ono, Seiki Komiya CRIEPI Tokyo

Andrey Chubukov U Wisconsin

Ilya Eremin MPI Dresden

Andreas Erb WMI Garching

Helmut Berger EPFL Lausanne

Funding

DFG (Forschergruppe 538), EU (LSF Programme)

ad