1 / 33

b lifetimes

b lifetimes. Simone Donati INFN & University of Pisa. 8th International Symposium on Heavy Flavour Physics University of Southampton 25 - 29 July 1999. Outline. Introduction - Theoretical Framework - Crucial detector elements B + , B 0 lifetime and t (B + )/ t (B 0 )

roxy
Download Presentation

b lifetimes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. b lifetimes SimoneDonati INFN & University of Pisa 8th International Symposium on Heavy Flavour Physics University of Southampton 25 - 29 July 1999

  2. Outline • Introduction • - Theoretical Framework • - Crucial detector elements • B+, B0 lifetime and t(B+ )/t(B0 ) • - Dl and D0l samples • - B vertex charge • - Exclusive reconstruction • B0s lifetime • - DS l correlation • - DS h samples • - Exclusive reconstruction • Lb lifetime • - Lc lepton combination • Summary and Conclusions

  3. Theoretical Framework q, l Baseline SpectatorModel: the light quark acts as a spectator  All b - hadrons have the same lifetime. G = (GF2 mb5/192p3) · | Vcb | 2 · F • q, n W b c • Vcb B D q q But, for charm hadrons: t (D-) ~ 2.5 t (D0) ~ 2.5 t (Ds-) ~ 5.0 t (Lc-) p+ q, l b c w b D- W B0 W B+ c b B+ D0 q,n p+ u d u u u W exchange B+ annihilation D0 b c w p+ Expected lifetime difference ~ 5 - 10 % between B0 and B+(t (B+)  t (B0) ) due to nonspectatoreffects. u u Destructive interference between external / internal W emission

  4. Theoretical Framework • Effects scale as 1/m2q • - Important effects for c hadrons: t (D+) / t (D0) = 2.55  0.04 • - Up to 10 % differences expected for b hadrons (from HQE) • t(Lb)  t (B0d) t (B0s)  t (B+) • Theoretical predictions still unstable • Measurements with a precision of few % needed

  5. B+, B0 meson lifetimes and t(B+) / t(B0) • Dl and D0l samples: CDF, ALEPH, DELPHI, OPAL • B vertex charge: DELPHI, L3, OPAL, SLD • Exclusive reconstruction: ALEPH (BDp), CDF (BJ/y K) • Inclusive reconstruction of Dl combinations(B0 only): • DELPHI, ALEPH, L3

  6. Crucial for B physics • SiliconMicrostripDetector • s d = ( 13 + 40 / pt ) mm • 2D vertex error ~ 60 mm • CentralTrackingChamber • B field = 1.4 T, Radius = 1.4 m • (dpt/pt)2 = (0.0066)2+(0.0009 pt)2 • J/yKs0massresolution ~10MeV/c2 • Lepton (e / m) Detection: fundamental for B - triggers • - Inclusive lepton trigger • b  lncX or b  cX, c lnY(  pt ( B ) ~ 20 GeV/c ) • - Dilepton ( em , mm ) trigger • b  J/y X, y  m+ m- (  pt ( B ) ~ 10 GeV/c ) • b  m- X , b  e+ Y

  7. CDF Experimental Technique (A) lep n All lifetime results are based on the DecayLength measurement Lxy B lep-D direction    (VB - VP) ·pt (D-lep) VP VB D Lxy =  |pt (D-lep)| • Fully reconstructed decays • ct (B) = Lxy m(B) / pt(B)proper D.L. • Partially reconstructed decays • l = Lxy m(B)/pt(D-lep)pseudo-properD.L. • Correction factor pt(D-lep) /pt(B) from • MC, introduced statistically in the fit. pt(D-S-l+) / pt(B0S)

  8. CDF Experimental Technique (B) # events signal sample # events bck. sample Lifetime and background shape are determined from a simultaneous fit of Signal and Background samples. Signal Signal prob. distr. nS nB L =  [ f sig F isig +(1- f sig)  F ibck ]   F jbck j i Bck. prob. distr. Signal fraction under the “D mass” peak Convolution F isig = [Decay exponential  Gaussian resolution ] [ pt(Dl) / pt(B) Smearing ] Background F ibck= Gaussianresolution + [Positive exp. + Negative exp.]  Gaussian resolution Only for part. rec. decays Zero -lifetime bck HF contribution

  9. CDF: B+ and B0 lifetime from B  D()lnXdecays • D candidates searched for • close to the trigger lepton. • a) D0 K+p-( D0 not from D -) • b) D - D0 p-, D0 K+p- • c) D - D0 p-, D0 K+p- p+ p- • d) D - D0 p-, D0 K+p- p0 • Crosstalk from D resonance • B0  D  -l + X, D  - D0 X • B+  D  0l + X, D 0 D -X • decomposed using MonteCarlo • (main source of systematic error) t(B-) = (1.637  0.058+0.045) ps -0.043 t(B0) = (1.474  0.039+0.052) ps t(B-) / t(B0) = 1.110  0.056+0.033 -0.051 -0.030 l (B-) l (B0)

  10. ALEPH: B+ and B0 lifetime from B  D()lnXdecays (A) • Technique similar to CDF • - D +  D0 p+ sample • D0 K-p+ • D0 K-p+p-p+ • D0 K-p+p0 • D0 K0Sp+p- • -D0 sample (D0 not from D +) • D0 K-p+ • D0 K-p+p0 • D0 K0Sp+p-

  11. ALEPH: B+ and B0 lifetime from B  D()lnXdecays (B) t(B0) = ( 1.524  0.053+0.035 ) ps t(B+) = ( 1.646  0.056+0.036 ) ps t(B+) / t(B0) = 1.080  0.062  0.018 -0.032 -0.034

  12. OPAL: B+ and B0 lifetime from Vertex Charge (A) • Inclusive approach • b events selected requiring displaced • vertices and high momentum leptons • Hemisphere tag • T-tag : Jet-charge, vertex charge and • lepton charge used to tag b flavour • M-tag: used to determine decay length • and perform lifetime fit e+ T-tag : identify bb events ( ~ 10,000 reconstructed vertices) b M-tag vertex charge Qvtx =  wi qi Z0 Probability that the track exits from secondary vertex b e- M-tag : perform lifetime measurement

  13. OPAL: B+ and B0 lifetime from Vertex Charge (B) • Excess decay length method • To reduce the bias from the M-tag • the excess to the minimum decay • length which results in a resolvable • secondary vertex is used. t (B0) = ( 1.523  0.057 0.053 ) ps t (B+) = ( 1.643  0.037  0.035) ps t (B+) / t (B0) = 1.079  0.064  0.041 Excess decay length

  14. SLD: B+ and B0 lifetime from Topological Vertexing • Inclusive 3D vertex reconstruction • performed exploiting the excellent • performance of the vertex detector • Decay length  1 mm • Vertex mass  2 GeV/c2 to eliminate • charm and light flavor background • Vertex charge obtained adding the • charge of the corresponding tracks • Charge purity enhanced using • - Beam polarization • - Opposite hemisphere jet charge Reconstructed Vertex Charge t (B0) = ( 1.585  0.021 0.043 ) ps t (B+) = ( 1.623  0.020  0.034) ps t (B+) / t (B0) = 1.037+0.025  0.024 Decay Length (cm) -0.024

  15. CDF: B+ and B0 lifetime from exclusive B  J/y Kdecays 82436 fully reconstructed B+ - B+  J/y K+ - B+  J/y K+ - B+  y (2S) K+ - B+  y (2S) K+ 43627 fully reconstructed B0 - B0  J/y K0S - B0  J/y K0 - B0  y (2S) K0S - B0  y (2S) K0 M (m+ m- p + p - ) M (m+ m- ) l(B+) peak region l (B 0) peak region t(B+) = (1.680.070.02) ps t(B0) = (1.580.090.02) ps t(B+) / t(B0)=1.060.070.02 l(B+) sideband region l (B 0) sideband region

  16. Summary of B+ meson lifetime

  17. Summary of B0d meson lifetime

  18. Summary of t (B+) / t (B0)

  19. B0S meson lifetime • DS l correlation: ALEPH, DELPHI, OPAL, CDF • DS - hadron decays: ALEPH, DELPHI • J/yfexclusive decay: CDF

  20. DELPHI: BS lifetime from DS l correlation (A) • 3.6 million Z0 hadronic decays • B0S  D-S l+nX • - D-S f p+, K0K-, K0SK-, • f p+p-p+, f p+p0, K0K- • - D-S f e-n, f m-n • - D-S f h-X (partially reconstructed) • background sources • - B  D(* ) D(* )+X (D l -nX) • (reduced by high pt lepton and mass) • - Reflections from B+  K-p+p+ • (if one p is misidentified as K) f l h candidates

  21. DELPHI: BS lifetime from DS l correlation (B) • t(B0S) = ( 1.42+0.14(stat)  0.03 (syst)) ps • Sources of systematic error • - Background fraction +0.0090 • - Cascade decays -0.0100 • - Background from B -0.0020 • - XDs discrim. var. +0.008 • - pt discrim. Var. 0.004 • - t(B+) (1.65  0.04 ps) -0.0010 • - t(B0d) (1.56  0.04 ps) -0.0012 • - t resolution 0.008 • - t acceptance 0.010 • - Simulated evts. Statisitcs 0.020 • Total 0.03 • DGBs / GBs  0.46 @95 C.L. -0.13 -0.0130 +0.0110 +0.0020 +0.0010 +0.0130 f l h sample

  22. DELPHI: BS lifetime from DS h decays (A) • 3.5 million Z0 hadronic decays • - B0S D-S p+ or D-S a+1 • - D-S  f p- or K 0 K+ • Larger statistics than DS l, but • lower purity (hadronambiguity) • B vertex found constraining the • DS h from a common vertex • BS Purity increased using • -DS mass andmomentum • - |cos(y)| • - c2 of the DS vertex • - Opposite hemisphere B tag

  23. DELPHI: BS lifetime from DS h decays (B) t(B0S) = ( 1.49+0.16(stat)+0.07(syst)) ps -0.15 -0.08 • Sources of systematic error • - Sample composition +0.013 • - Background fraction +0.046 • - Back. Parameterization +0.017 • - BS purity +0.005 • - t resolution  0.019 • - t(B+) (1.65  0.04 ps)  0.021 • - t(B0d) (1.56  0.04 ps)  0.019 • - Analysis bias corr.  0.040 • Total +0.07 • DGBs / GBs  0.58 @95 C.L. -0.016 -0.050 -0.012 -0.015 -0.08 DS sidebands

  24. CDF: BS lifetime from BS J/yfdecay Use 58  12 BS J/yfevents Simultaneous fit of the mass and proper decay length distribution M (J/y f ) M (m+ m- ) t(B0S) = (1.34+0.23  0.05) ps -0.19 B0S proper decay length

  25. CDF: BS lifetime from BS D-S l+ndecays • D-S candidates are searched for close • to the trigger lepton • - D-S  f p-, f  K+K- 220  21 ev • - D-S  K 0 K-, K 0  K+ p- 12520 ev • - D-S  K0SK-, K0S p+ p- 33  8 ev • - D-S  f m- n, f  K+K- 205  38 ev • Problem: BS signal faked by Bd decays • D-d  K 0 p-and D-d  K0Sp- can • fake D-S signal if p is assumed as K • Solution: simultaneous fit of the K 0 K- • K 0 p- mass distributions to estimate • both components (crosscheck from • D-d and D-S lifetime difference) • t (B0S) = (1.36  0.09  0.05) ps • World’s best measurement from a single experiment • DGBs / GBs  0.83 @95 C.L. Same data after switching K- to p- K0SK- Mass MC MC

  26. Summary of B0S meson lifetime

  27. CDF: Bcdiscovery and lifetime from Bc J/y lXdecays • Bc meson observed through • the decay • Bc J/y l X(l = e or m) • M(Bc)=6.400.390.13 GeV/c2 • t (Bc) = 0.46+0.18 0.03 ps -0.16 e only m only

  28. Lblifetime • Lc lepton combination : ALEPH, DELPHI, OPAL, CDF • L l+l-method: ALEPH, OPAL

  29. ALEPH: Lb lifetime from Lb L+cl-ndecays • 193 Fully reconstructed L+c l- • - L+c  p K-p+ • - L+c  p K0 • - L+c  L p+ p+ p- • - L+c  L p+ • t (Lb) = LM / p • - 3D decay length (s ~ 180 mm) • - p from L+c l-andnenergy • t(Lb) = 1.18+0.13 0.03 ps -0.12

  30. CDF: Lb lifetime from Lb L+cl-ndecays • 197  25 fully reconstructed L+cl- • -L+c  p K-p+ • - Energy loss in the CTC used for statistical • particle identification • - Physicalbackground from B  Lc DsX • Lb LcDsX reduced using kinematics • - Combinatorial background fraction • estimated from wrong sign Lcl pairs • - pt correction for missing n from MC • - Background lifetime shape estimated • from L+c  p K-p+ sidebands • t(Lb) = 1.32  0.15 0.07 ps

  31. Summary of Lb lifetime

  32. Summary of b lifetime

  33. Conclusion • Current status of b hadrons lifetime • measurements (CDF, LEP and SLD) • has been reviewed • World average for t (B+) / t (B0) is • starting to put in evidence a significant • difference from unity • t (Lb) still much lower than prediction • More data and more work needed from • single experiments

More Related