1 / 33

Tecnologie Robotiche dal controllo neurale del movimento alla neuroriabilitazione motoria

Tecnologie Robotiche dal controllo neurale del movimento alla neuroriabilitazione motoria Pietro Morasso. Headquarters in Genoa. IIT : a new private research institution with headquarters in Genoa. http://www.iit.it. iit headquarters Genova Morego.

rotz
Download Presentation

Tecnologie Robotiche dal controllo neurale del movimento alla neuroriabilitazione motoria

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tecnologie Robotiche dal controllo neurale del movimento alla neuroriabilitazione motoria Pietro Morasso

  2. Headquarters in Genoa IIT : a new private research institution with headquarters in Genoa http://www.iit.it

  3. iit headquarters Genova Morego 5:Nanobiotechnologies Facilities (Chemistry, Biology Labs, Offices) 4: Robotics departments Labs and Offices 3: Robotics departments Labs and Offices 2: Neuroscience and Brain Technologies Labs, Offices 1: Administration,Drug Discovery and Development Labs, Offices 0: Seminar Room, Restaurant, Administration, Offices -1:Nanobiotechnologies Facilities: Clean Room, Microscopy Labs, Optical Labs and Animal Facility Headquarter Genova Morego: 18.500 m2; about 700 people

  4. iit headquarters Genova Morego RBCS (Giulio Sandini) ROBOTICS, BRAIN and COGNITIVE SCIENCE dept A -Humanoid Robotics iCub baby robot B -Human behaviour Dynamic touch Motor Learning and Rehab Physiology of Action & Percept. C - Interaction & Interface BMI Tissue engineering Mirror neurons Open fMRI machine Headquarter Genova Morego: 18.500 m2; about 700 people

  5. Cosa è un robot? • E’ un sistema meccatronico che comprende: • uno scheletro articolato • un insieme di attuatori • un insieme di sensori • un’unità di controllo • un ‘sistema cognitivo’ (apprendimento, adattamento …)

  6. KUKA Robots ABB A cosa serve un robot? • Industria: • Posizionare con precisione e velocità un modulo operativo specializzato in diversi punti dello spazio di lavoro

  7. A cosa serve un robot? • Neuroscienze: • In generale, a simulare una interazione aptica

  8. A cosa serve un robot? • Neuroscienze: • In generale, a simulare una interazione aptica

  9. A cosa serve un robot? • Neuroscienze: • In generale, a simulare una interazione aptica

  10. A cosa serve un robot? • Neuroscienze: • In generale, a simulare una interazione aptica

  11. A cosa serve un robot? • Neuroscienze: • In generale, a simulare una interazione aptica

  12. HUMAN SUBJECT HAPTIC ROBOT Physiological signals Audio/visual stimuli Movement Force A cosa serve un robot? • Neuroscienze: • In generale, a simulare una interazione aptica • Neuroscienze: • In generale, a simulare una interazione aptica HAPTIC VIRTUAL REALITY HAPTIC VIRTUAL REALITY

  13. Stato della penetrazione delle tecnologie robotiche nella clinica* • Scarso • Limitato, nella maggior parte dei casi alla movimentazione passiva • Mancanza di adattatività allo stato del paziente • Scarsa integrazione tra terapia robotica e terapia tradizionale • Scarsa efficacia (allo stato attuale) ** * Arto superiore ** Mehrholz J, Platz T, Kugler J, Pohl M (2009) Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. The Cochrane Collaboration, Cochrane Library, 1, JohnWiley & Sons. Lo C.A. et al (2010) Robot-Assisted Therapy for Long-Term Upper-Limb Impairment after Stroke. New England Journal of Medicine (10.1056).

  14. Movimentazione passiva • Può essere efficace per contrastare il deterioramento delle proprietà tixotropiche dello scheletro collagenico del muscolo • E’ del tutto inefficace ad indurre il recupero funzionale basato sul reclutamento della plasticità del sistema nervoso Beyond the time-dependent spontaneous neurological recovery, the principal process responsible for functional recovery is the use-dependent reorganization of neural mechanisms made possible by neural plasticity. Nudo RJ (2006) Mechanisms for recovery of motor function following cortical damage. Current Opinion in Neurobiology, 16:638–644. Nudo RJ (2007) Postinfarct cortical plasticity and behavioral recovery. Stroke 38:840-5. Cumberland Consensus Working Group (2009) The future of restorative neurosciences in stroke: driving the translational research pipeline from basic science to rehabilitation of people after stroke. Neurorehabil Neural Repair 23:97-107

  15. Movimentazione passiva  Assistenza compliante • Nella movimentazione passiva il robot si comporta come un servomeccanismo “rigido”, ad elevata impedenza meccanica: generatore di movimento • Al contrario, il robot terapista deve essere “compliante” in modo da fornire un minimo grado di forza assistiva, modulata in funzione della performance: generatore di forza

  16. Braccio di Ferro 2dof (BdF) Bimanual BdF – 21/2 dof+ Bimanual BdF – 4 dof IIT grasp robot IIT wrist robot: 3dof ROBOTS DESIGNED IN THE LAB FOR NEUROMOTOR REHAB

  17. NEUROMOTOR REHABILITATION General Casadio M, Morasso P, Sanguineti  V, Arrichiello V  (2006)  Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol Health Care, 14, 123–142.  Casadio M, Giannoni P, Masia L, Morasso P, Sandini G, Sanguineti V, Squeri V, Vergaro E (2009) Robot therapy of the upper limb in stroke patients: rational guidelines for the principled use of this technology. Functional Neurology 24:195-202. Casadio M, Giannoni P, Masia L, Morasso P, Sanguineti V, Squeri V, Vergaro E (2010) Consciousness as the emergent property of the interaction between brain, body, and environment: implications for robot-enhanced neuromotor rehabilitation. Journal of Psychophysiology, 24(2):125-130. Stroke Casadio M, Giannoni P, Morasso P, Sanguineti V (2009) A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patient. Clinical Rehabilitation 23: 217-228. Casadio M, Morasso P,  Sanguineti V, Giannoni P (2009) Minimally assistive robot training for proprioception-enhancement. Experimental Brain Research, 194, 219-231. Casadio M, Morasso P, Noriaki Ide A, Sanguineti V, Giannoni P (2009) Measuring functional recovery of hemiparetic subjects. Measurement, 42:1176-1187. Squeri V, Casadio M, Vergaro E, Giannoni P, Morasso P,  Sanguineti V,  (2009) Bilateral robot therapy based on haptics and reinforcement learning:  feasibility study of a new concept for treatment of  patients after stroke .  J Rehabilitation Medicine 41: 961–965. Masia L, Casadio M, Giannoni P, Sandini G, Morasso P (2009) Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study. J of NeuroEngineering and Rehabilitation, 6(44):1-11. Vergaro E, Casadio M, Squeri V, Giannoni P, Morasso P, Sanguineti V (2010) Self-adaptive robot-training of stroke patients  for continuous tracking movements. J of NeuroEngineering and Rehabilitation, 7:13. Multiple sclerosis Casadio M, Sanguineti V, Solaro C, Morasso P (2007) A haptic robot reveals the adaptation capability of individuals with multiple sclerosis. The Intl J of Robotics Research, 26, 1225-1234. Casadio M, Sanguineti V, Morasso P, Solaro C (2008) Abnormal sensorimotor control, but intact force field adaptation, in multiple sclerosis subjects with no clinical disability. Mult Scler 14: 330-342. Vergaro E, Squeri V, , Brichetto G, Casadio M,  Morasso P, Solaro C, Sanguineti V (2010) Adaptive robot training for the treatment of incoordination in multiple sclerosis. J of Neuroengineering and Rehabilitation, 7:37. Cerebral Palsy Masia L, Frascarelli F, Morasso P, et al. (2010) Reduced short-term adaptationto robot generated dynamic environments in children affected by congenital cerebral palsy. EJPN, n press http://sites.google.com/site/pietromorasso/

  18. ROBOT THERAPY OF HEMIPARETIC PATIENTS WITH MINIMAL ASSISTIVE STRATEGY Selected force level Task:reaching movements to distant targets Three target levels: A (near), B (middle), C (far enough to require almost full extension) Basic sequence:A  C  B  A Block of sequences:3x7 A  C Two experimental conditions:Open eyes – Closed eyes Casadio M, Giannoni P, Morasso P, Sanguineti V. (2009) A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients . Clinical Rehabilitation 2009 23:217-228.

  19. EVOLUTION OF HAND STIFFNESS DURING TRAINING Time-frequency analysis Piovesan D, Casadio M, Mussa Ivaldi FA, Morasso P (2011) Multijoint arm stiffness during movements following stroke: implications for robot therapy. IEEE ICORR 2011, Zurich.

  20. VISUAL FEEDBACK INCREASES STIFFNESS Piovesan D, Casadio M, Morasso P, Mussa Ivaldi FA, Giannoni P (2011) Influence of Visual Feedback in the Regulation of Arm Stiffness Following Stroke. IEEE EMBC 2011, Boston.

  21. HIGH-STIFFNESS (triggered) vs. LOW-STIFFNESS (adaptive) ASSISTANCE Triggered Assistance Adaptive Assistance Carpinella I, Cattaneo D, Ferrarin M, Morasso P, Squeri V (2011) Test for Selecting Upper Limb Robot Treatment in Stroke Patients: Triggered High-Stiffness vs. Adaptive Low-Stiffness Assistance . IEEE EMBC 2011, Boston.

  22. EVALUATION OF LIMB POSITION SENSE PROPRIOCEPTIVE ASSESSMENT Squeri V, Zenzeri J, Morasso P, Basteris A (2011) Integrating proprioceptive assessement with proprioceptive training of stroke patients. ICORR 2011, Zurich. PROPRIOCEPTIVE TRAINING

  23. NEUROMOTOR REHABILITATION – adaptive assistance scheme Direct –drive motors, low-inertia, low-friction, low-impedance control

  24. NEUROMOTOR REHABILITATION – adaptive assistance scheme Goal: to modulate the assistancepatterns generated by a haptic robot in a personalized manner, for promoting the emergence of voluntary control = building internal models of motor planning and control.

  25. NEUROMOTOR REHABILITATION – minimally assistive & progressively decreasing strategy of assistance in tracking movements of stroke patients Vergaro E, Casadio M, Squeri V, Giannoni P, Morasso P, Sanguineti V (2010) Self-adaptive robot-training of stroke patients  for continuous tracking movements. J of NeuroEngineering and Rehabilitation, 7:13.

  26. NEUROMOTOR REHABILITATION S1 (FMA=4) Smoothness improves S3 (FMA=25)

  27. NEUROMOTOR REHABILITATION – minimally assistive & progressively decreasing strategy of assistance in tracking movements of stroke patients Endurance increases Assistance decreases

  28. NEUROMOTOR REHABILITATION – minimally assistive & progressively decreasing strategy of assistance in tracking movements of stroke patients QUANTITATIVE INDICATORS Movement arrest time ratio (MATR): mean value of the ratio between the time in which the target stops and the total duration of the movement. It is a measures of movement segmentation. Tracking error (TE): mean value of the distance of each point of the path from the theoretic path (the figure-of-eight trajectory). It is a measure of accuracy.

  29. NEUROMOTOR REHABILITATION – minimally assistive & progressively decreasing strategy of assistance in tracking movements of stroke patients Recalibration of the visual/proprioceptive channels

  30. PRELIMINARY WRIST STUDY Squeri V, Masia L, Morasso P, (2011) Improving the ROM of Wrist Movements in Stroke Patients by means of a Haptic Wrist Robot. IEEE EMBC 2011, Boston.

  31. Devjani Saha Pietro Morasso Lorenzo Masia Maura Casadio Psiche Giannoni Vittorio Sanguineti Jacopo Zenzeri Vishwanathan Mohan Valentina Squeri Elena Vergaro Angelo Basteris Vladimir Novakovic

  32. Rome Neurology Dept. UNIGE G. Gaslini Children Hospital, IRCCS Milan Genoa clinical collaborations

More Related