# Ex 13.5, 3 - Chapter 13 Class 12 Probability (Term 2)

Last updated at Feb. 15, 2020 by Teachoo

Last updated at Feb. 15, 2020 by Teachoo

Transcript

Ex 13.5, 3 There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item? If a trial is Bernoulli, then There is finite number of trials They are independenta Trial has 2 outcomes i.e. Probability success = P then Probability failure = q = 1 – P (4) Probability of success (p) is same for all trials Let X : be the number of defective items Picking items is a Bernoulli trial So, X has binomial distribution P(X = x) = nCx 𝒒^(𝒏−𝒙) 𝒑^𝒙 Here, n = number of items = 10 p = Probability of getting defective item = 5% = 5/100 = 1/20 q = 1 – p = 1 – 1/20 = 19/20 Hence, P(X = x) = 10Cx (𝟏/𝟐𝟎)^𝒙 (𝟏𝟗/𝟐𝟎)^(𝟏𝟎 − 𝒙) We need to find Probability that we get not more than one defective item P(not more than one defective item) = P(getting 0 defective item) + P(getting 1 defective item) = P(X = 0) + P(X = 1) = 10C0(1/20)^0 (19/20)^(10 −0) + 10C1(1/20)^1 (19/20)^(10 − 1) = 1 × 1 × (19/20)^10 + 10 × 1/20 × (19/20)^9 = (19/20)^10+1/2 (19/20)^9 = 19/20 (19/20)^9+1/2 (19/20)^9 = (19/20)^9 [19/20+10/20] = (19/20)^9 29/20 = 𝟐𝟗/𝟐𝟎 (𝟏𝟗/𝟐𝟎)^𝟗

Ex 13.5

Ex 13.5, 1
Deleted for CBSE Board 2022 Exams

Ex 13.5, 2 Deleted for CBSE Board 2022 Exams

Ex 13.5, 3 Important Deleted for CBSE Board 2022 Exams You are here

Ex 13.5, 4 Important Deleted for CBSE Board 2022 Exams

Ex 13.5, 5 Deleted for CBSE Board 2022 Exams

Ex 13.5, 6 Important Deleted for CBSE Board 2022 Exams

Ex 13.5, 7 Important Deleted for CBSE Board 2022 Exams

Ex 13.5, 8 Deleted for CBSE Board 2022 Exams

Ex 13.5, 9 Deleted for CBSE Board 2022 Exams

Ex 13.5, 10 Important Deleted for CBSE Board 2022 Exams

Ex 13.5, 11 Deleted for CBSE Board 2022 Exams

Ex 13.5, 12 Deleted for CBSE Board 2022 Exams

Ex 13.5, 13 Important Deleted for CBSE Board 2022 Exams

Ex 13.5, 14 (MCQ) Important Deleted for CBSE Board 2022 Exams

Ex 13.5, 15 (MCQ) Important Deleted for CBSE Board 2022 Exams

Chapter 13 Class 12 Probability (Term 2)

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.