slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
コンピュータアーキテクチャ I #2 論理数学の基礎 PowerPoint Presentation
Download Presentation
コンピュータアーキテクチャ I #2 論理数学の基礎

Loading in 2 Seconds...

play fullscreen
1 / 27

コンピュータアーキテクチャ I #2 論理数学の基礎 - PowerPoint PPT Presentation


  • 67 Views
  • Uploaded on

コンピュータアーキテクチャ I #2 論理数学の基礎. 平成26年 4 月18日. 教科書 p.12 ~ p.23. 本日の講義内容. 2 進数と 10 進数(復習) 論理とは? 組み合わせ論理,順序論理,2値論理 論理表現と演算 真理値と真理値表 基本的な論理演算 論理和,論理積,否定 ベン図による論理の表現 双対性 まとめ. 2 進 -10 進変換. 10 進数→ 2 進数 2 で割って余りを求める これを余りが0か1になるまで続ける 最後に求めた余りから最初の方に向かって余り(0か1)を並べれば変換終了 2 進数→ 10 進数

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'コンピュータアーキテクチャ I #2 論理数学の基礎' - rosalyn-riddle


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

コンピュータアーキテクチャI #2論理数学の基礎

平成26年4月18日

教科書p.12~p.23

slide2
本日の講義内容
  • 2進数と10進数(復習)
  • 論理とは?
    • 組み合わせ論理,順序論理,2値論理
  • 論理表現と演算
    • 真理値と真理値表
  • 基本的な論理演算
    • 論理和,論理積,否定
    • ベン図による論理の表現
    • 双対性
  • まとめ
slide3
2進-10進変換
  • 10進数→2進数
    • 2で割って余りを求める
    • これを余りが0か1になるまで続ける
    • 最後に求めた余りから最初の方に向かって余り(0か1)を並べれば変換終了
  • 2進数→10進数
    • 2進数の第桁目はを表す
    • 桁目の値にをかけた値を各桁で求める
    • これをすべて加えれば変換終了
slide4
論理とは
  • ろんり(logic)<広辞苑>
    • 思考の形式・法則。また、思考の法則的なつながり。
    • 実際に行われている推理の仕方。論証のすじみち。
    • 比喩的に、事物間の法則的なつながり。
  • 「論理回路」の世界では,論理変数と論理演算を組み合わせ,「命題」を表現する手立て.
proposition
命題(Proposition)
  • 正しいか,正しくないかの判定ができる文章や数式のこと
    • 「2013年度セントラルリーグ優勝はタイガースだった」
    • 「2013年度セントラルリーグ優勝チームは?」
    • 「赤い色の果物はイチゴである」
    • 「いちごは赤い色の果物である」
  • ある命題が正しい: 真(True,1)
  • ある命題が正しくない: 偽(False,0)
slide6
論理変数
  • ある物事を表すのに用いる「変数」.2値しかとりえない変数を用いるときは「2値論理」と呼ぶ.
  • (例)論理変数X:そば粉が使われている
    • 「そば」や「そばがき」など:
    • 「うどん」や「パスタ」など:
  • (例)論理変数Y:海苔がのっている
    • 「ざるそば」,「親子丼」など:
    • 「ハンバーグ」など:
slide7
独立変数と従属変数
  • 独立変数
    • 他に束縛されることなく値を決定できる
    • 先の例では論理変数が該当する
  • 従属変数
    • 他の論理変数の値により,値が決まる変数
    • 「ざるそば」を論理変数とすれば,は従属変数であり,以下のように表される
    • 「もりそば」を論理変数とすれば,は従属変数であり,以下のように表される
slide8
真理値と真理値表
  • すべての独立変数がとりうる値に対して,従属変数がどのような値をとるかを一覧表にしたもの
    • 変数:そば粉
    • 変数:海苔
    • 変数:ざるそば
  • 論理変数がとる値
    • 論理値と呼ぶ
slide9
例題:真理値表を作ってみる
  • 2つの2進数1桁を加算したときの和と桁上がりの関係
  • 講義が休講であり,友人A,B,Cのうち2人以上がOKすれば,カラオケに行く
  • 宮崎県内で畜養された黒毛和牛肉であり,等級がA5かA4以上であれば,「宮崎牛」である
slide10
命題の否定
  • ある論理変数に対し,その値を否定(反転)すること
    • 論理変数の否定:

のとき

のとき

slide11
論理積
  • ある命題とがあり,ともに「真」のときのみ成り立つ命題
    • はとの「論理積」である,という
slide12
論理和
  • ある命題とがあり,どちらか一方が「真」であれば成り立つ命題
    • はとの「論理和」である,という
2 and or not
2変数のAND,OR,NOTと真理値表
  • 論理変数によるAND,OR,に対するNOT演算をまとめて書きなさい

0

0

1

0

1

0

0

1

1

1

0

1

and or

0

0

1

0

1

0

0

1

0

1

0

1

1

0

1

1

3変数のAND,ORと真理値表
  • 論理変数に対するANDとORをまとめて書きなさい
slide15
論理式(関数)とは
  • ある命題を,論理変数とその演算を組み合わせて表現したもの
  • 命題Z:「翌日が土曜日か日曜日であり,天気予報が晴れであり,かつ所持金が3千円以下でなければ海水浴にいく」
    • 翌日が土曜日: A(真ならば1)
    • 翌日が日曜日: B(真ならば1)
    • 天気予報が晴れ: C(真ならば1)
    • 所持金が3千円以下: D(真ならば1)
slide16

0

0

0

1

0

0

1

0

0

1

0

0

0

1

1

1

1

0

0

1

1

0

1

0

1

1

0

0

1

1

1

1

真理値表と論理式
  • 論理式
    • ある論理変数について,真となる条件のみを独立変数の論理演算の形で表したもの
    • 真理値表が与えられたとき,
      • 論理式が1となる場合の,
      • 各場合の論理変数の値を調べ,
      • 論理変数の値が1ならそのまま,
      • 論理変数の値が0なら変数を否定し,
      • 結果の論理積をとり,
      • すべての場合の5を論理和で結ぶ
slide17
ブール代数
  • ブールさん
    • 論理変数に対する演算を体系化した人
  • ブール代数
    • 論理変数に対する演算体系
    • 代数構造
    • 演算の強さ: NOT > AND > OR

否定

slide18
ブール代数の公理(1)
  • を前提とする
  • 公理1:
    • (a)
    • (b)
  • 公理2:
    • (a) となる元0が存在する
    • (b)となる元1が存在する
  • 公理3:交換則
    • (a)
    • (b)
slide19
ブール代数の公理(2)
  • 公理4:(分配則)
    • (a)
    • (b)
  • 公理5:元0と元1が唯一であるとき,

  なる元が存在する

  • 公理6:にはとなるとが存在する
slide20
双対性
  • ある論理関係の0を1,1を0,+を・,・を+に置き換えて出来る関係を「双対」という
  • 双対性が成り立つ公理
    • 公理1aと1b
    • 公理2aと2b
    • 公理3aと3b
    • 公理4aと4b
slide21
閑話休題
  • 公理
    • 証明不可能であるとともに、また証明を必要とせず直接に自明の真として承認され他の命題の前提となる根本命題。(イ)ある理論領域で仮定される基本前提。この場合、公理は自明な真理ではなく、公理系のとり方によって定まる。従ってある公理系で公理である命題も、他の公理系においては公理から証明される定理となることや、また偽となることがある。
  • 定理
    • (theorem) すでに真なりと証明された一般的命題。公理または定義を基礎として真であると証明された理論的命題。
slide22
主なブール代数の定理(1)
  • 公理2aを満たす元0および公理2bを満たす元1は,それぞれ唯一つ存在する
  • 公理5を満たす元はただ1つだけ存在する
  • 任意の元Aに対し,次のべき等則が成立する 
slide23
主なブール代数の定理(3)
  • 任意の元に対し,次の復帰則が成立する
  • 任意の元に対し,次の結合則が成立する
slide24
主なブール代数の定理(4)
  • 任意の元に対し,次の吸収則が成立する
  • 任意の元に対し,次の第2吸収則が成立する
slide25
主なブール代数の定理(5)
  • 任意の元に対し,次のド・モルガンの定理が成立する
slide26
練習問題

下の式をブール代数を用いて証明せよ

slide27
本日のまとめと来週の予定
  • 論理演算の基本
    • 命題と論理変数
    • 真理値と真理値表
    • 基本的な論理演算(AND, OR, NOT)
    • ブール代数の公理と定理
  • 来週の予定
    • 2変数論理関数とド・モルガンの法則
    • 加法標準形と乗法標準形