1 / 44

Sterowalność - osiągalność

Sterowalność - osiągalność. Sterowalność określa możliwości wpływania na stan (lub wyjście) systemu odpowiednim ukształtowaniem wejścia. Ogólnie wyróżnia się dwa określenia sterowalności:.

roch
Download Presentation

Sterowalność - osiągalność

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sterowalność - osiągalność Sterowalność określa możliwości wpływania na stan (lub wyjście) systemu odpowiednim ukształtowaniem wejścia Ogólnie wyróżnia się dwa określenia sterowalności: 1. Sterowalność do początku (controllability-to-the-origin), nazywana krócej sterowalnością (controllability) 2. Sterowalność od początku (controllability-from-the-origin), nazywana krócej osiągalnością (reachability)

  2. Dla systemów liniowych stacjonarnych mówimy: Stan x0 nazywamy sterowalnym, jeżeli istnieje wejście, które przeprowadza stan systemu x(t) z stanu x0 do stanu zerowego w pewnym skończonym czasie T Stan zerowy osiągany ze stanu x0 przy zastosowaniu różnych wejść u1(t) i u2(t), w różnych skończonych czasach T1 i T2 oraz po różnych trajektoriach

  3. Dla systemów liniowych stacjonarnych mówimy: Stan x1 nazywamy osiągalnym, jeżeli istnieje wejście, które przeprowadza stan systemu x(t) z stanu zerowego do stanu x1 w pewnym skończonym czasie T Stan x1 osiągany ze stanu zerowego przy zastosowaniu różnych wejść u1(t) i u2(t), w różnych skończonych czasach T1 i T2 oraz po różnych trajektoriach

  4. Ograniczymy się do zapoznania się z podstawowymi wynikami znanymi dla systemów liniowych, a w szczególności stacjonarnych

  5. Systemy ciągłe Sterowalność stanu Stan sterowalny Stan systemu liniowego jest sterowalny, jeżeli można system przeprowadzić z tego stanu do stanu za pomocą odpowiedniego sterowania w skończonym czasie Jeżeli każdy stan jest sterowalny, mówimy, że system jest całkowiciesterowalny lub krócej sterowalny

  6. Sterowalność systemu System sterowalny System liniowy jest sterowalny w skończonym przedziale czasu , jeżeli istnieje wejście , które przeprowadzi system z dowolnego stanu do stanu zerowego Jeżeli istnieje chociaż jeden stan systemu na który nie można oddziaływać przez jakiekolwiek wejście systemu, wówczas system jest niesterowalny

  7. Sterowalność systemu ciągłego liniowego stacjonarnego - testy System liniowy stacjonarny (twierdzenie SSC LS1) jest sterowalny wtedy i tylko wtedy, gdy macierz sterowalności, nazywana macierzą sterowalności Kalmana ma rząd n, tzn. rząd systemu Wymiar macierzy sterowalności: nxnp; n – wymiar stanu, p – wymiar wejścia Dla p=1 macierz sterowalności jest macierzą kwadratową i dla sprawdzenia sterowalności wystarczy sprawdzić nieosobliwość macierzy sterowalności Dodatek A – przykłady zastosowania testu SSC LS1 – test Kalmana

  8. Zwykle i-ty wektor własny odpowiadający i-tej wartości własnej macierzy A jest definiowany Ze względu na porządek mnożenia, tak określony wektor własny vi jest nazywany prawostronnym wektorem własnym Podobnie można zdefiniować lewostronny wektor własny wi Dokonując transpozycji Widać: lewostronne wektory własne A są prawostronnymi wektorami własnymi AT

  9. Twierdzenie SSC LS2 System liniowy stacjonarny jest sterowalny wtedy i tylko wtedy, gdy nie istnieje żadem lewostronny wektor własny macierz A, taki że co oznacza, że żaden wektor własny macierz A nie jest ortogonalny jednocześnie do wszystkich kolumn macierz B

  10. Twierdzenie SSC LS3 System liniowy stacjonarny jest sterowalny wtedy i tylko wtedy, gdy macierz o wymiarze nx(n+p) ma rząd n dla dowolnego zespolonego skalara s Test sterowalności w oparciu o twierdzenia 2 lub 3 nosi nazwę testu Popov’a – Belevitch’a-Hautus’a Dodatek B – przykłady zastosowania testu SSC LS2 – test Popov’a – Belevitch’a-Hautus’a

  11. Twierdzenie SSC LS4 Diagonalny system liniowy stacjonarny z jednokrotnymi wartościami własnymi jest sterowalny wtedy i tylko wtedy, gdy macierz B nie ma wierszy zerowych Dodatek C – przykłady zastosowania testu SSC LS4

  12. Przekształcenia podobieństwa - macierz przekształcenia podobieństwa - nieosobliwa Sterowalność a przekształcenia podobieństwa Sterowalność zostaje zachowana podczas transformacji podobieństwa

  13. Dla systemów ciągłych sterowalność i osiągalność są równoważne Możemy tą równoważność wypowiedzieć w następujący sposób: Jeżeli system ciągły posiada cechę sterowalności stwierdzoną w oparciu o podane wyżej twierdzenia, to oznacza to, że będziemy mogli znaleźć trajektorię wejścia, która będzie przemieszczać system z dowolnego stanu początkowego do dowolnego stanu końcowego, czyli, że system będzie też posiadał cechę osiągalności System ciągły sterowalny  system ciągły osiągalny

  14. Systemy dyskretne Dodatek D – przykład systemu dyskretnego posiadającego cechę sterowalności, ale nie posiadającego cechy osiągalności Wniosek z przykładu: Można wskazać systemy dyskretne posiadające cechę sterowalności, ale nie posiadające cechy osiągalności Uzasadnione jest zatem w odniesieniu do systemów dyskretnych stwierdzać posiadanie cechy osiągalności

  15. W ogólności zatem System dyskretny sterowalny  system dyskretny osiągalny Implikacja ta zachodzi jednak tylko dla przypadków, gdy AD jest osobliwa, w przeciwnym przypadku podobnie jak dla systemów ciągłych System dyskretny sterowalny  system dyskretny osiągalny

  16. Osiągalność stanu Stan osiągalny Stan systemu liniowego jest osiągalny, jeżeli można system przeprowadzić do tego stanu ze stanu za pomocą odpowiedniego sterowania w skończonym czasie Jeżeli każdy stan jest osiągalny, mówimy, że system jest całkowicieosiągalny lub krócej osiągalny

  17. Osiągalność systemu dyskretnego liniowego stacjonarnego Twierdzenie OSD LS1 System liniowy stacjonarny jest osiągalny wtedy i tylko wtedy, gdy macierz osiągalności, nazywana macierzą osiągalności Kalmana ma rząd n, tzn. rząd systemu Wymiar macierzy osiągalności: nxnp; n – wymiar stanu, p – wymiar wejścia Dla p=1 macierz osiągalności jest macierzą kwadratową i dla sprawdzenia osiągalności wystarczy sprawdzić nieosobliwość macierzy osiągalności

  18. Twierdzenie OSD LS2 System liniowy stacjonarny jest osiągalny wtedy i tylko wtedy, gdy nie istnieje żadem lewostronny wektor własny macierz AD, taki że co oznacza, że żaden wektor własny macierz AD nie jest ortogonalny do wszystkich kolumn macierz BD

  19. Twierdzenie OSD LS3 System liniowy stacjonarny jest osiągalny wtedy i tylko wtedy, gdy macierz o wymiarze nx(n+m) ma rząd n dla dowolnego zespolonego skalara z Test sterowalności w oparciu o twierdzenia 2 lub 3 nosi nazwę testu Popov’a – Belevitch’a-Hautus’a

  20. Twierdzenie OSD LS4 Diagonalny system liniowy stacjonarny z jednokrotnymi wartościami własnymi jest osiągalny wtedy i tylko wtedy, gdy macierz BDnie ma wierszy zerowych

  21. Sterowalność wyjścia Twierdzenie SW LS1 Wyjście liniowego systemu stacjonarnego jest sterowalne wtedy i tylko wtedy, gdy rząd macierzy o wymiarze qxnm jest równy q (q– wymiar przestrzeni wyjścia)

  22. Dziękuję za uczestnictwo w wykładzie i uwagę

  23. Dodatek A

  24. Przykład 1. Dany jest system dynamiczny Zbadać sterowalność systemu Konstruujemy macierz sterowalności

  25. Stąd Dla sprawdzenia sterowalności policzymy wyznacznik zatem System jest niesterowalny (względem stanów)

  26. Lewa górna podmacierz macierzy sterowalności ma wyznacznik różny od zera, zatem Przykład 2. Dany jest system dynamiczny Zbadać sterowalność systemu

  27. Transmitancja systemu Konstruujemy macierz sterowalności stąd

  28. Macierz sterowalności jest niezależna od współczynników licznika transmitancji systemu Wyznacznik macierzy sterowalności Wyznacznik macierzy sterowalności nie zależy współczynników wielomianu charakterystycznego a0, a1 oraz a2, zatem system o takiej strukturze jest zawsze sterowalny względem stanu

  29. Przykład 3. Konstruujemy macierz sterowalności Dwa stany sterowalne, dwa niesterowalne

  30. Przykład 4. Dany jest system dynamiczny Zbadać sterowalność systemu Macierz sterowalności System sterowalny

  31. Przykład 5. Dany jest system dynamiczny Zbadać sterowalność systemu Macierz sterowalności System sterowalny

  32. Dodatek B

  33. Przykład 6 Test sterowalności Popov’a – Belevitch’a-Hautus’a Lewostronne wektory własne dla dla dla dla

  34. Patrząc na nietrudno spostrzec, że System jest niesterowalny

  35. Dodatek C

  36. Przykład 7. Układ elektryczny; wejście – napięcie u, wyjście - prąd y Budowa modelu Równania bilansowe Zależność wiążąca Różniczkując zależność wiążącą i podstawiając do drugiego równania bilansowego

  37. Wybierając zmienne stanu Równania stanu Równanie wyjścia System z natury ma diagonalną strukturę – możemy zastosować Twierdzenie 4 jeżeli wartości własne są jednokrotne

  38. Wartości własne Ponieważ obydwa wiersze macierzy B są zawsze niezerowe – system jest sterowalny, jeżeli tylko wartości własne są jednokrotne Macierz testu Kalmana

  39. Wyznacznik macierzy Kalmana Jeżeli wartości parametrów elementów układu Równania stanu Równanie wyjścia Wartość własna dwukrotna

  40. Wyznacznik macierzy Kalmana Schemat blokowy układu Równania stanu są niezależne Odpowiedzi stanu gdzie, , x10 i x20 – warunki początkowe

  41. Do stanu końcowego można doprowadzić system tylko ze stanów początkowych a nie ze wszystkich

  42. Dodatek D

  43. Przykład 8. Rozważmy system dyskretny Równania dla poszczególnych stanów maja postać: W świetle podanej definicji system jest sterowalny, bo: Weźmy dowolny stan Wybierając sterowanie

  44. Przeprowadzimy system do stanu dla Zatem system jest sterowalny, w świetle podanej definicji jest równy zero dla wszystkich niezależnie Drugi stan od przyłożonego wejścia i nie można go przeprowadzić gdziekolwiek indziej System nie posiada zatem cechy osiągalności

More Related