1 / 62

K →  崩壊の探索と 京都グループの活動

K →  崩壊の探索と 京都グループの活動. K L →  0 . KOPIO (BNL) : 笹尾 野村  (+ 新スタッフ )            隅田 (D2) 森井 (D1) 横山 (D1)           白井 (M2) 谷口 (M2) 中島 (M1). E391a (KEK) : 笹尾 野村 隅田 (D2) 森井 (D1). K + →  + . E787 (BNL) : 藤原 (D3). E949 (BNL) : 笹尾 野村 藤原 (D3) 溝内 (D3).

robyn
Download Presentation

K →  崩壊の探索と 京都グループの活動

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. K→崩壊の探索と京都グループの活動 KL→0 KOPIO (BNL) : 笹尾 野村 (+新スタッフ)            隅田(D2) 森井(D1) 横山(D1)           白井(M2) 谷口(M2) 中島(M1) E391a (KEK) : 笹尾 野村隅田(D2) 森井(D1) K+→+ E787 (BNL) : 藤原(D3) E949 (BNL) : 笹尾 野村 藤原(D3) 溝内(D3)

  2. KOPIO Apparatus – CG with High-lights– Beam  veto Shashlyk calorimeter Eye-pipe charged veto(ビームパイプ内壁部分) 2X0 Preradiator Decay region

  3. Beam Catcher(全面的に担当) 最下流の中性ビーム中の光子Veto 横3.6~6m(ビームの拡がりに応じて増す)、高さ30cm 中性子の数が多い 300個/microbunch (>830 MeV) 検出すべき光子 比較的高いエネルギー(>300MeV)に集中 (運動学的カットのおかげ) 性能要求 >99% for 300 MeV photon <3x10-3 for 830 MeV neutron 時間分解能 1 nsec 2信号分離能力 3 nsec Eye-pipe Charged Veto(デザイン、パート試験を担当) 真空槽内で荷電粒子を検出 p+<10-5 p-<10-4 プリラディエータ、カロリメータのビーム側内層をカバー(ビームパイプに沿う形) シンチ+波長変換ファイバー+高量子効率PMT 日本(京都)グループ担当箇所

  4. エアロジェル性能評価システム– チェレンコフ発光量 – • ビームより簡易に、宇宙線より迅速に! • テーブルトップ・単色ベータビームを開発 光量測定結果 2段ソレノイド・スペクトロメータ 106Ru そのまま 1.5MeV,DE=10% 2.5MeV,DE=6% 光量のエネルギー依存を迅速に測定可能 黒:データ、赤:MC

  5. E391a: KL→0測定実験 100mm • 測定: p0(⇒gg) + nothing • KL生成: KEK 12GeV PS • “Pencil beam” • 検出器 • 高精度の CsI カロリーメータ • 崩壊領域を完全に覆う veto 検出器 • バレル部光子 veto • ビーム周りの “Collar” 検出器 • 崩壊領域: ~10-5 Pa の高真空 • SensitivityO(10-10) • SM Prediction ~ 3x10-11 10 m g g KL n n n Z軸

  6. Run-I 2004: 2/16~6/30 ⇒300 シフト 187 シフト: 物理データ取得 24 シフト: p0生成ターゲットを用いた較正 89 シフト: ビームチューニング等 KL生成 1次陽子ビーム取り出し: 2秒(4秒spill) 2.2×1012 proton / spill ⇒ 5x105KL /spill ~110 GB/日 ⇒ full data: 6TB Run-II 2005: 2/3~3/17(予定) ⇒100 シフト 改良点 (後述) 新collar counter Multi-hit TDC ⇒ レート耐性の強化 ビーム中に Be absorber を挿入 E391a Data Taking 2004.1.22 検出器完成

  7. Run-I: 解析の現状 • バックグラウンドの見積り • single p0分布の比較 • Final plot (1 week data) and Sensitivity • 1 week data analysis • KL→ 3p0 ,KL→ 2p0 による KLビームの理解 Next slide … 崩壊点 3p0の質量 運動量分布 ±20% Recon Mass (GeV/c2) Zvtx (cm) Pt (GeV/c)

  8. Run-I: 解析の現状 (2) バックグラウンドの予測 各崩壊モード分布 (MC) 2g trigger data MC vs Data (1week data) 中性子が真空膜に衝突 Zvtx (cm)

  9. Run-I: 解析の現状 (3) Final Plot (1Week data) No significant signal/background observed. Sensitivity ~ 10-8

  10. Run-II での改良点 • Core beamが真空膜に当たっている (改)ビームに対して正確に固定 • Halo neutron起源のバックグラウンド   (改)新Collar counter • K/n比と False Veto (改) Be absorber RUN-I RUN-II RUN-II with Be CC02 CC03 CC04 CC05 CC06 CC07 FB MB CV CsI BHCV BA BACV RUN-I RUN-II RUN-II with Be Accidental veto の確率 PT (GeV/c) Vertex Zvtx(cm)

  11. 京都グループの貢献 • 隅田(D2) • Run-I • DAQ システム構築 • 検出器組み立て • シミュレーション • Run-II • 物理解析 • 森井(D1) • Run-II • 各検出器のエネルギー較正 • KL→ 3p0 による CsI の較正

  12. E391a : まとめと今後の展望 • Run-I • 2004/Feb/16 ~ Jun/30 300シフト (187シフト 物理ラン) • 1week data の解析 • 10-8のsensitivity • 問題点の理解 • バックグラウンドレベルの見積りが進行中 • Run-II • 2005/Feb/3 ~ Mar/17 100シフト • Run-I における問題点への対策 • core neutron ⇒ 真空膜の張り直し ⇒ 効果を確認(x1/5) • halo neutron ⇒ 新collar counterの導入 • n/K比, acceptance ⇒Be absorberの導入⇒acc向上を確認 • 目的 • 解析方法の確立 • バックグラウンドが十分少いことの確認 ⇒秋のPS運転でさらに100 シフトを申請中 10-10オーダの感度を目指す

  13. K+→+崩壊の探索 • Introduction • Experimental Method • Analysis • Results

  14. Vtd l Motivation (Flavor Changing Neutral Current: FCNC) • Second order: Top quark dominant • Vtd vertex • Theoretical uncertainty Good decay to measure |Vtd| SM prediction Current measurement

  15. Detection Strategy K+→m+ K+→+ (nothing) K+→+p0 K+→m+ Charged Particle Momentum from K+

  16. K+ generation • BNL AGS 24GeV/c (down to 21.5 GeV/c) • 2sec beam-on in 5sec repetition • 6.0×1013 proton/spill on Target • K+/p+ electrostatic separator (K/p ratio = 4/1) • 3.5×106 K+/spill at P of 700MeV/c Pt target 19.6 m in length

  17. Platinum target After E949 data taking Before E949 data taking

  18. K+ generation • BNL AGS 24GeV/c (down to 21.5 GeV/c) • 2sec beam-on in 5sec repetition • 6.0×1013 proton/spill on Target • K+/p+ electrostatic separator (K/p ratio = 4/1) • 3.5×106 K+/spill at P of 700MeV/c Pt target 19.6 m in length

  19. Electrostatic Mass Separator

  20. K+ generation • BNL AGS 24GeV/c (down to 21.5 GeV/c) • 2sec beam-on in 5sec repetition • 6.0×1012 proton/spill on Target • K+/p+ electrostatic separator (K/p ratio = 4/1) • 3.5×106 K+/spill at P of 700MeV/c Pt target 19.6 m in length

  21. Possible Background List

  22. E949 detector end view (upper half) E949 Detector 1T magnetic field phi (1) K+/p+ ID in Cerenkov counter (2) Stop K+ in scintillator fiber target (3) Wait at least 2ns for K+ decay (4) Measure P in drift chamber (5) Measure range R and energy E in target and range stack(RS) (6) Stop p+ in range stack (7) Observe p+ →m+ →e+ in RS (8) Veto extra activities. E949 detector side view (upper half) Blue : Updated system for E949

  23. K+/p+ Identification in Cerenkov

  24. E949 detector end view (upper half) E949 Detector 1T magnetic field phi (1) K+/p+ ID in Cerenkov counter (2) Stop K+ in scintillator fiber target (3) Wait at least 2ns for K+ decay (4) Measure P in drift chamber (5) Measure range R and energy E in target and range stack(RS) (6) Stop p+ in range stack (7) Observe p+ →m+ →e+ in RS (8) Veto extra activities. E949 detector side view (upper half) Blue : Updated detectors for E949

  25. Stop K+ in Scinti. Fiber Target Tout – Tin (ns) Kaon decay Pion scattering 0ns 20ns 15cm

  26. E949 detector end view (upper half) E949 Detector 1T magnetic field phi (1) K+/p+ ID in Cerenkov counter (2) Stop K+ in scintillator fiber target (3) Wait at least 2ns for K+ decay (4) Measure P in drift chamber (5) Measure range R and energy E in target and range stack(RS) (6) Stop p+ in range stack (7) Observe p+ →m+ →e+ in RS (8) Veto extra activities. E949 detector side view (upper half) Blue : Updated system for E949

  27. Barrel Part - End View -

  28. E949 detector end view (upper half) E949 Detector 1T magnetic field phi (1) K+/p+ ID in Cerenkov counter (2) Stop K+ in scintillator fiber target (3) Wait at least 2ns for K+ decay (4) Measure P in drift chamber (5) Measure range R and energy E in target and range stack(RS) (6) Stop p+ in range stack (7) Observe p+ →m+ →e+ in RS (8) Veto extra activities. E949 detector side view (upper half) Blue : Updated system for E949

  29. Trace p+ decay sequence • p+ life time : 26 ns • +energy : 4MeV • + life time : 2.2 ms p+ stop counter Time (ns) 0 ns 100 ns

  30. E949 detector end view (upper half) E949 Detector 1T magnetic field phi (1) K+/p+ ID in Cerenkov counter (2) Stop K+ in scintillator fiber target (3) Wait at least 2ns for K+ decay (4) Measure P in drift chamber (5) Measure range R and energy E in target and range stack(RS) (6) Stop p+ in range stack (7) Observe p+ →m+ →e+ in RS (8) Veto extra activities. E949 detector side view (upper half) Blue : Updated system for E949

  31. CsI for photon veto

  32. DAQ Summary (60 weeks approved) • Physics run in 2002 (12 weeks) • beam intensity x2 • Detector worked very well • Smooth data taking • Beam condition was not optimized 2 events observed

  33. 1 2

  34. 1 Nature Feb/7/2002

  35. 2 Nature Feb/14/2002

  36. Analysis Analysis Strategy • Blind Analysis • Measure Background level with real data • To avoid bias, 1/3 of data cut tuning 2/3 of data background measurement • Characterize backgrounds using back- ground functions • Likelihood Analysis

  37. Neural net function for and Background distribution Backgrounds can be characterized using background functions Example : muon backgrounds Range deviation Decay chain trace

  38. Likelihood Analysis Divide signal region into cells. T. Junk [NIM A434, 435 (1999)] For the cell , # of expected signal # of expected background … from background functions # of actually observed event Likelihood estimator

  39. NK (1012) Total acceptance (%) Sensitivity (10-10) Sensitivity and Background Sensitivity diff Background Note: 10% larger acceptance results in more backgrounds In the likelihood analysis, the ratio for each cell is a key. The total background level isn’t a mater in signal region. All cuts are fixed and ready to open the BOX !

  40. Opening the BOX Range (cm) and Energy (MeV) plot after all other cuts applied. signal box Single candidate found.

  41. Branching ratio & Confidence level • E949 result alone: • Combine E787 and E949 results increase statistics E949(02) = combined E787&E949. E949 projection with full running period. (~60 weeks) (68% CL)

  42. Thanks to Gino Isidori Without constraints that depend on Bd mixing Effect on unitarity triangle Limits from measurements of: BR(K+ - π+νν) : ------- central value 68% interval 90% interval

  43. E949 has observed an additional candidate. (68% CL, PNN1 region) from the combined E787 and E949 result. • We need more data. - Further E949 running? - Analysis of “below (PNN2) region” Conclusions

  44. Appendix

  45. Neural net function for and

  46. Event Display

  47. Motivation is clear and simple • To construct the K unitarity triangle and confirm the “golden” relation which is valid in the SM and MFV. • Use K+p+ n nandK0p0 n n to measure the CPV related elements (sin2b)p n n = (sin2b)J/Ks A.J. Buras et.al hep-ph/0405132

  48. BNL-E949 detector -- Rejecting beam backgrounds Top half of side view m+n e+n n Target fibres p+ K cluster  p cluster n n  cerenkov B4 Beam 1 K Charge exchange K cerenkov  K decay Beam 2 Beam backgrounds include pion scattering, kaon decay-in-flight, and charge-exchange reactions.

  49. BNL-E949 detector -- Powerful and redundant particle ID Top half of end view E949 R/P dE/dx E787 Photon veto -ID from its decay chain. Resolutions: DP/P ~ 1.1%; DR/R~ 3.0%; DE/E ~ 1.0%/E. Rejections:~105 for m;~106 for photon with 4p sr coverage.

More Related