Astronomical Instrumentation - PowerPoint PPT Presentation

astronomical instrumentation n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Astronomical Instrumentation PowerPoint Presentation
Download Presentation
Astronomical Instrumentation

play fullscreen
1 / 33
Astronomical Instrumentation
70 Views
Download Presentation
roanna-abbott
Download Presentation

Astronomical Instrumentation

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Astronomical Instrumentation

  2. Light Detectors • Eye • Use averted vision to see Faintest objects Only the brightest stars show color with the naked eye

  3. Naked eye limiting magnitude • A difference of a factor of 100 in brightness corresponds to a difference of 5 magnitudes • Limit usually taken as around 6.0, but by taking special precautions some have seen to magnitude 7 or fainter with the naked eye

  4. Photography • 1852 daguerreotype • Daguerreotypes and wet plate photographs were very insensitive to light and were inconvenient to use • Dry plates developed in 1870s

  5. Harvard College Observatory • Collection of some 500,000 photographic plates taken between 1880s and 1980s • Provide a record of changes in the sky

  6. Different photographic emulsions were sensitive to different wavelengths of light • Early emulsions were mostly sensitive to blue and ultraviolet light • Early photographic magnitudes • “pg” blue • “pv” or “pvis” yellow

  7. Kodak emulsions blue to red • Oh, John, George doesn’t eat flannel underwear nor milk zebras • OJGDEFUNMZ • Not made anymore

  8. National Geographic Palomar Sky Survey 1950-57 103aO 103aF

  9. POSS II • 1980s and 1990s • IIIaJ • IIIaF • Finer emulsion than in POSS I

  10. UK Schmidt telescope in Australia • Southern counterpart to POSS • IIIaJ and IIIaF Digitized versions of these surveys are downloadable

  11. Photoelectric Photometry • Advantages • Linear • Higher quantum efficiency than photography

  12. Stebbins 1910

  13. 1930s: Photomultiplier tubes • IP21 workhorse photomultiplier tube after WW II • One star at a time photometry

  14. 1950s: UBV filter system • U 365nm FWHM = 68nm • B 440nm 98 • V 550nm 89 • B-V = color index (bigger means redder)

  15. 1980s: CCD detectors (charge-coupled devices) • Array detectors for visible to about 1000 nm • Combines high quantum efficiency and imaging capability

  16. CCDs were originally much smaller than photographic plates, but they are getting bigger

  17. CCD Chips

  18. CCD in use at the 24-inch on campus • Apogee Ap47p 1024x1024 CCD • Thermoelectrically cooled • Designed for observing fainter objects

  19. SLOAN Digital Sky Survey

  20. SLOAN Digital Sky Survey

  21. Infrared Observing • Has also gone to area arrays • Spartan Infrared imager (1-2.5 microns) • 4 2048x2048 HgCdTe detectors (mercury cadmium telleride)

  22. Inexpensive planetary imagers • Celestron NexImage • Meade Autostar

  23. Basic CCD observing • CCD images should be calibrated • Bias • Dark frame • Flat field

  24. Bias Frame • Sets the zero-point of the CCD output • Essentially a 0 second exposure with the shutter closed • Should be subtracted from all images

  25. Dark Frames • Even if the shutter is closed, every CCD image will have some signal • The warmer the CCD, the bigger this “dark signal” is • To minimize this we can cool the CCD, either electrically or cryogenically

  26. Dark Frames • Take one or more exposures with the shutter closed • Ideally about as long as the real exposures and at the same CCD temperature • Subtract these dark frames

  27. Flat fields • Not every pixel on the CCD will be equally sensitive to light • With the same filter you will use for observing, taken an exposure of a uniform light source, such as the twilight sky

  28. Flat fields • Flat field images should be divided into the object image

  29. The Night Sky Livehttp://nightskylive.net/main.html

  30. Stardial

  31. Stardial TT Mon