1 / 46

Le spectre des GRBs dans le modèle EMBH

Le spectre des GRBs dans le modèle EMBH. Pascal Chardonnet LAPTH + Collaboration Roma La Sapienza. POLAR - January, 18 2008. Discovery of GRBs. GRBs unknown until the end of ‘60 neither predicted by astrophysical or cosmological models. Discovery by chance by Vela satellite (1973).

riversm
Download Presentation

Le spectre des GRBs dans le modèle EMBH

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Le spectre des GRBs dans le modèle EMBH Pascal Chardonnet LAPTH + Collaboration Roma La Sapienza POLAR - January, 18 2008

  2. Discovery of GRBs • GRBs unknown until the end of ‘60 neither predicted by astrophysical or cosmological models • Discovery by chance by Vela satellite (1973) • I revolution (BATSE satellite, ‘90): isotropy of spatial distribution • II revolution (BeppoSAX, 1997): • discovery of afterglow X • cosmological distance (z order of 1)

  3. The EMBH model 1) Spherical symmetry for all the phases. 2) Magnetohydrodynamics and pair equations for the evolution of the plasma in the optically thick phase. Fully radiative condition for the energy emission in the afterglow. 3) nism = 1 particle/cm3 i.e. a constant density interstellar medium. - “Relative Space Time Transformations” (RSTT) paradigm(Ruffini et al., ApJ 555, L107, 2001) - “Interpretation of the Burst Structure” (IBS) paradigm(Ruffini et al., ApJ 555, L113, 2001) - “GRB-supernova Time Sequence” (GSTS) paradigm(Ruffini et al., ApJ 555, L117, 2001)

  4. Assumptions • Spherical symmetry • “Fully radiative” condition • Temporal variability of light curve due to • inhomogeneity of interstellar medium • Thermal distribution of energy in comoving frame

  5. Parameters of the model • Edya is the total energy emitted by source • B= MBc2/Edya parametrizes baryonic matter protostellar not collapsed • R = Aeff/Atotindicates the porosity of interstellar medium • <nism> is the particle number density of interstellar medium Edya B

  6. Temporal structure of GRB Collision with baryonic remnant Conversion of internal energy in kinetic energy Increase of opacity of pulse Edya Short GRB Long GRB

  7. The bolometric luminosityof the source Where: De = internal energy developed in the ABM - ISM collision. L = g (1 - (v/c) cosJ) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002)Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

  8. Bolometric light curve Edya= 4.83 ´1053erg B = 3.0 ´10-3

  9. GRB 991216 BATSE noise threshold Ruffini, Bianco, Chardonnet, Fraschetti, Xue, 2001b, ApJ, 555, L113

  10. B C D A GRB 991216

  11. B C D A Temporal substructure of peak

  12. Emitted luminosity Thermaldistribution of energy in comoving system: Tarris the temperature of radiation emittedby dS and observed on the Earth

  13. Luminosity and spectrum:GRB991216 Peak Afterglow c2 = 0.497 GRB 980425, 030329, 031203, 980519, 970228,…

  14. Spectral evolution Hard-to-Soft evolution Time integrated spectrum Non-thermal observed spectrum GRB 980425, 030329, 031203, 980519, 970228,…

  15. Swift era Model verified in a precedently unobserved temporal window (102 -104 sec) Structure of light curve afterglow simply explained the claimed breaks in light curves GRB050315

  16. The model presented builts the whole temporal evolution of the GRB, from the progenitor to the non-relativistic phase of the afterglow. • Interpretation of temporal structure of GRB: P-GRB e E-APE. • The temporal variability of light curve traces the inomogeneities of ISM. • Afterglow observations are compatible with thermal spectrum in pulse comoving system. • No polarization predicted Conclusions

  17. Equations for afterglow In the laboratory system with

  18. Arrival time (ta) vs. emission time (t) Power-law slope in the afterglow: Approximate ta computation: Exact ta computation: The observed one is:-1.616 ± 0.067 (Halpern et al, 2000) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, 2002a, A&A, submitted to

  19. Power law of Lorentz g factor (I) Inelasticcollision of expanding shell with an infinitesimally thick shell of ISM of mass dm at rest. Energy-momentum conservation and increment of mass: from 1) 3) g0 >> g>> 1

  20. Power law of Lorentz g factor (II) B=10-3 • For g0 ~200, power law different from the predicted one (g0 >> g >> 1 not satisfied). • The predicted power laws in limits adiabatic and fully radiative are reached only when g tends to infinity and only in a limited region. B=10-6

  21. Prototype GRB 991216 • One of the most energetic GRB ever observd: Etot@1053ergs, z = 1.0. • Details on temporal structure by BATSE and on afterglow by satellites R-XTE • and Chandra (Iron lines). • Power law index for afterglow: n=-1.616 ± 0.067.

  22. GRB 991216 - IBS paradigm BATSE noise threshold Ruffini, Bianco, Chardonnet, Fraschetti, Xue, 2001b, ApJ, 555, L113

  23. GRB 980425 - SN1998bw:A newly formed neutron star (Pian) The newly formed neutron star:

  24. The luminosity of GRB 030329 and SN 2003dhin the EMBH model

  25. The ISM inhomogeneity “mask” <nism> = 1 particle/cm3 i.e. an interstellar medium with variable density but average density of 1 particle/cm3. g = 139.9 g = 200.5 DR= 1015 cm g = 265.4 g = 303.8 g = 57.23 g = 56.24

  26. Visible Invisible Visible Invisible The ABM pulse visible area

  27. The observed luminosity:two different time scales • t is the photon emission time from the source. • tad is the photon arrival time at the detector. Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, (2001)

  28. Arrival time ta vs. emission time t Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, (2001)Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

  29. Arrival time ta vs. emission time t Afterglow power-law slope for GRB 991216: Approximate ta computation: Exact ta computation: Observed slope:-1.616 ± 0.067 (Halpern et al, 2000) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

  30. Angular dispersion Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002)Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

  31. The Equitemporal Surfaces Constant speed (r = vt): Ellipsoids of constant eccentricity v/c Numericalintegration General case: Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002)Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

  32. Visible Invisible Visible Invisible ABM Pulse visible area Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002)Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

  33. The bolometric luminosityof the source Where: De = internal energy developed in the ABM - ISM collision. L = g (1 - (v/c) cosJ) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 581, L19, (2002)Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

  34. t t D t a D t a D t + t 0 D t + t 0 1 £ g £ 310 g @ 4 t t R R 0 r r 0 Arrival time ta vs. emission time t Rees, Nature, 211, 468, (1966) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, (2001) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

  35. Relativistic contractionor classical Doppler effect? Doppler contraction: where: - g is the gamma Lorentz factor of the moving source,-T0 is the period of the radiation measured in the comoving frame,-T is the period of the radiation measured by an observer at rest. The arrival time relation: is then just a classical Doppler contraction and has nothing to do with special relativistic effects.

  36. The Dyadosphere The initial conditions in the EMBH model: +Q -Q Preparata, Ruffini, Xue, 1998, A&A 338, L87 see also Ruffini, Vitagliano, Xue, in preparation + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - e+e- plasma

  37. R. Ruffini, J.A. Wheeler, “Introducing the Black Hole”, Physics Today, January 1971

  38. Theoretical background of the EMBH model + - Heisenberg, Euler, 1935 Schwinger, 1951 Christodoulou, Ruffini, 1971 Damour & Ruffini 1974 • In a Kerr-Newmann black hole vacuum polarization process occurs if3.2MSun£MBH£ 7.2·106MSun • Maximum energy extractable 1.8·1054 (MBH/MSun) ergs • “…naturally leads to a most simple model for the explanation of the recently discovered g-rays bursts”

  39. Theoretical model GRBs originate from the vacuum polarization processálaHeisenberg-Euler-Schwinger in the space-time surrounding a non-rotating electromagnetic black hole Collision PEMB pulse ABM pulse PEM pulse

  40. Observations • Irregularity of temporal profile of single event and variabilityof temporal profile between different events • Bimodaldistribution of duration • Observedspectrum non-thermal..

  41. The g Lorentz factor Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L113, (2001)Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

  42. t t D D t t a a D D t t + + t t 0 0 g @ 4 t t R R D D r 0 0 Arrival time ta vs. emission time t Dta = Dt Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, (2001) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

  43. GRB 991216 BATSE noise threshold

  44. Invisible region Invisible region The “Equitemporal” surfaces

More Related