1 / 24

PRIMENA TRODIMENZIONE METODE KONAČNIH ELEMENATA U PROCENI ENERGETSKE EFIKASNOSTI OMOTAČA ZGRADE

35. MEĐUNARODNI KONGRES O KLIMATIZACIJI, GREJANJU I HLAĐENJU Beograd, 1-3. decembra 2004. 35th CONGRESS ON AIR CONDITIONING, HEATING AND REFRIGIRATING Belgrade, December 1-3, 2004. PRIMENA TRODIMENZIONE METODE KONAČNIH ELEMENATA U PROCENI ENERGETSKE EFIKASNOSTI OMOTAČA ZGRADE.

Download Presentation

PRIMENA TRODIMENZIONE METODE KONAČNIH ELEMENATA U PROCENI ENERGETSKE EFIKASNOSTI OMOTAČA ZGRADE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 35. MEĐUNARODNI KONGRESO KLIMATIZACIJI, GREJANJU I HLAĐENJU Beograd, 1-3. decembra 2004. 35th CONGRESS ON AIR CONDITIONING, HEATING AND REFRIGIRATING Belgrade, December 1-3, 2004 PRIMENA TRODIMENZIONE METODE KONAČNIH ELEMENATA U PROCENI ENERGETSKE EFIKASNOSTI OMOTAČA ZGRADE ON THE THREEDIMENSIONAL FINITE ELEMENT METHOD IN THE ENERGY EFFICIENCY OF BUILDING’S ENVELOPE Dr Dubravka Mijuca*, Dr Dušan Gajić**, Marko Vukobrat** *Matematički fakultet, Univerzitet u Beogradu, P. FAH 550 **Institut "Kirilo Savić", Beograd dmijuca@matf.bg.ac.yu

  2. ENERGIJA KOJA SE TROSI U ZGRADAMABUILDING ENERGY USE • Energy used in buildings (to heat, cool, light,and provide other important energy services) accounts for about one-fourth to one-third of allenergy used in Central and Eastern Europe. • Na energiju koja se koristi u zgradama (za zagrevanje, hladjenje, osvetljavanje, i zadovoljavanje drugih važnih energetskih usluga) otpada oko ¼ celokupne energije upotrebljene u centralnoj i istočnoj Evropi

  3. MOTIV - MOTIVE • Projektovanje građevinskih objekata primenom savremenih metoda računske mehanikeje danas brže, efikasnije i jeftinije, a strukturalni kvaliteti energetska efikasnostprojektovanog, rekonstruisanog ili revitalizovanog objekta se njenom primenom povećava. • Contemporary design in the civil engineering becomes shorter in time, more efficient and less expensive by the use of numerical methods of computational mechanics, while structural quality and energetic efficiency are increased

  4. CILJ - GOAL • Pokazati da je analiza energetske efikasnosti građevinskih objekata i brža i jeftinija korišćenjem trodimenzionalne metode konačnih elemenata • To show that analysis of the energy efficiency of the civil facilities is faster and cheaper by the use of threedimensional finite element method

  5. ORIGINALNOST ISTRAŽIVANJA ORIGINALITY OF THE RESEARCH • Upotreba originalnog in-house softvera “FEMIX” baziranog na mešovitoj metodi konačnih elemenata, a koji je potupno integrisan u pre i post processing komercialnog koda “Straus7” • The use of the original in-house software “FEMIX” based on the mixed finite element method, which is fully integrated in the pre and post-processing of the commercial code “Straus7”

  6. KLJUČNE REČI - KEYWORDS • building envelope • non-homogenous wall • heat transfer • mathematical model • numerical simulation • energy efficiency • finite element method • CAD, CAE • HVAC • U-value • omotač zgrade • nehomogeni zid • prenos toplote • matematički model • numerička simulacija • energetska efikasnost • metoda-konačnih elemenata • KGH sistem • CAD, CAE • U-vrednost

  7. LITERATURA - REFERENCES • Hellen T. How to Use Elements Effectively. NAFEMS Ltd – he International Association for Engineering Analysis Community, http://www.nafems.org, 2002 • G+DComputing, “Straus7”, Finite element analysis system software package, Australia http://www.strand.aust.com • Mijuca D. On hexahedral finite element HC8/27 in elasticity, Computational Mechanics, 33 (2004), 6, pp 466-480 • Mijuca D, Žiberna A, Medjo B. A New multifield finite element method in steady state heat analysis. Thermal Science, 2004; accepted for publishing • Todorović B, Projektovanje postrojenja za centralno grejanje, Mašinski fakultet Univerziteta u Beogradu,1966 • Todorović M, Živković B. Prednosti numeričke simulacije termičkog ponašanja zgrade pri projektovanju sistema za klimatizaciju, Zbornik radova Trideset drugog kongresa o grejanju, hlađenju i klimatizaciji, Beograd, 2001 • Balocco C, A simple model to study a ventilated facade energy performance. Energy and Buildings, 34 (2002) pp. 469-475 • Mijuca D, Gajic D, Vukobrat M. Three-dimensional finite element method in energetic efficiency of buildings” Termotehnika, accepted for publication (in Serbian) • CEN. 1996. Building components and building elements - Thermal resistance and thermal transmittance - Calculation method. European Committee for Standardization, rue de Stassart 36, B‑1050 Brussels, Belgium. Ref. No. EN ISO 6946:1996. • Bazjanac V. Building energy performance simulation as part of interoperable software environments, Building and Environment, 39 (2004), 8, pp. 879-883 • CEN. 1995. Thermal bridges in building construction - Heat fows and surface temperatures - Part1: General calculation methods. European Committee for Standardization, rue de Stassart 36, B-1050 Brussels, Belgium. Ref. No. EN ISO 10211-1

  8. METODA KONAČNIH ELEMENATAFINITE ELEMENT METHOD • 3-D metoda konačnih elemenata koristi se za analizu stacionarnog problema prostiranja toplote kroz nehomogeni omotač zgrade • 3-D finite element method is used for the analysis of the steady-state building inhomogeneous envelope heat transfer Please note that present research is now standard in the developed countries !!! Therefore in this presentation - nothing is new or before time, except the use of original mixed FE approach!

  9. METODA KONAČNIH ELEMENATAFINITE ELEMENT METHOD HEXA8 Primal approach Software package Straus7 2 FEA methods HC20/27 Mixed approach Original in-house software FEMIX

  10. SAVREMENO PROJEKTOVANJE ZGRADASTATE OF THE ART IN THE BUILDING DESIGN • The calculation of temperature and heat flow through the walls, windows and roof of a building is the first step in estimates of energy efficiency of buildings, as well as in preventing problems arising from thermal stresses and condensation. • Proračun temperature i toplotnog fluksa kroz zidove, prozore i krovove zgrada je prvi korak proceni u energetske efikasnosti zgrade, kao i u preventivi problema koji nastaju usled termalnih napona i kondenzacije. [1] Canadian Building Digest – 52: Heat Transfer at Building Surfaces

  11. Numerical examples • Heat flow through inhomogeneous wall Investigation of dependence of heat transfer coefficient (U–value) on the material properties of wall components. [2] CEN. 1996. Building components and building elements - Thermal resistance and thermal transmittance - Calculation method. European Committee for Standardization, Ref. No. EN ISO 6946:1996. • Heat flow through a corner To determine heat losses throughout the structures. [3] CEN. 1995. Thermal bridges in building construction - Heat fows and surface temperatures - Part1: General calculation methods. European Committee for Standardization, Ref. No. EN ISO 10211-1 • Four storey building To investigate change of heat losses if the thermally efficient materials are used – the thermalvision camera effects

  12. Heat flow through inhomogeneous wallgeometry • The inhomogeneous wall build of light expanded clay aggregate block filled with polystyrene, mortar, with or without mineral wool is considered.

  13. Heat flow through inhomogeneous wallnumerical results and convergence

  14. Heat flow through inhomogeneous wall

  15. Heat flow through inhomogeneous wall Without mineral wool strip With mineral wool strip

  16. Heat flow through inhomogeneous wall

  17. Heat flow through a corner • This example deals with heat flow through a corner and a single floor.

  18. Heat flow through a corner

  19. Heat flow through a corner Temperature “FEMIX” Temperature “Straus7”

  20. Heat flow through a corner Heat Flux “FEMIX” Heat Flux “Straus7” From the results obtained, we may see that with a computationally inexpensive mesh (7 sec) we successfully meet the target results.

  21. Heat flow through a corneranimation Heat Flux “Straus7”

  22. Four-storey buildingthermalvision camera like effects By the use of different material on the the last two floors of building’s envelope energetic efficiency is increased

  23. Conclusion • Described FEA methods are cheaper, more efficient and precise, in regard to standard “hand-out” calculating methods. • It gives wide opportunities in the design process of the buildings and prediction of its thermal behavior. • The three-dimensional visualization of the calculated temperature and heat flux fields is provided. • Optimization of the cost/energy efficiency rate is enabled in the design process of the building’s envelope and HVAC system.

  24. CONTACT Dr. Dubravka Mijuca Faculty of MathematicsDepartment of MechanicsUniversity of BelgradeStudentski trg 1611000 BelgradeP.O.Box 550Serbia and Montenegro Phone 064-15-12-780www.matf.bg.ac.yu/~dmijuca QUESTIONS

More Related