1 / 16

Lecture 3

Lecture 3. Gauss Jordan Method Homogeneous Linear System. 1.2 Gauss Jordran Method. Example 4 Gauss-Jordan Elimination(1/4). Solve by Gauss-Jordan Elimination Solution: The augmented matrix for the system is. Example 4 Gauss-Jordan Elimination(2/4).

redell
Download Presentation

Lecture 3

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 3 Gauss Jordan Method Homogeneous Linear System

  2. 1.2 Gauss Jordran Method

  3. Example 4Gauss-Jordan Elimination(1/4) • Solve by Gauss-Jordan Elimination • Solution: The augmented matrix for the system is

  4. Example 4Gauss-Jordan Elimination(2/4) • Adding -2 times the 1st row to the 2nd and 4th rows gives • Multiplying the 2nd row by -1 and then adding -5 times the new 2nd row to the 3rd row and -4 times the new 2nd row to the 4th row gives

  5. Example 4Gauss-Jordan Elimination(3/4) • Interchanging the 3rd and 4th rows and then multiplying the 3rd row of the resulting matrix by 1/6 gives the row-echelon form. • Adding -3 times the 3rd row to the 2nd row and then adding 2 times the 2nd row of the resulting matrix to the 1st row yields the reduced row-echelon form.

  6. Example 4Gauss-Jordan Elimination(4/4) • The corresponding system of equations is • Solution The augmented matrix for the system is • We assign the free variables, and the general solution is given by the formulas:

  7. 1.2 Homogeneous Linear System

  8. Homogeneous Linear Systems(1/2) • A system of linear equations is said to be homogeneous if the constant terms are all zero; that is , the system has the form : • Every homogeneous system of linear equation is consistent, since all such system have as a solution. This solution is called the trivial solution; if there are another solutions, they are called nontrivial solutions. • There are only two possibilities for its solutions: • The system has only the trivial solution. • The system has infinitely many solutions in addition to the trivial solution.

  9. Homogeneous Linear Systems(2/2) • In a special case of a homogeneous linear system of two linear equations in two unknowns: (fig1.2.1)

  10. Example 7Gauss-Jordan Elimination(1/3) • Solve the following homogeneous system of linear equations by using Gauss-Jordan elimination. • Solution • The augmented matrix • Reducing this matrix to reduced row-echelon form

  11. Example 7Gauss-Jordan Elimination(2/3) Solution (cont) • The corresponding system of equation • Solving for the leading variables is • Thus the general solution is • Note: the trivial solution is obtained when s=t=0.

  12. Theorem 1.2.1 A homogeneous system of linear equations with more unknowns than equations has infinitely many solutions. • Note: theorem 1.2.1 applies only to homogeneous system • Example 7 (3/3)

  13. Homogeneous Linear Systems • A system of linear equations is said to be homogeneous if the constant terms are all zero. • Every homogeneous sytem of linear equations is consistent, since all such systems have x1=0,x2=0,...,xn=0 as a solution [trivial solution]. Other solutions are called nontrivial solutions. Linear Algebra - Chapter 1

  14. Homogeneous Linear Systems • Example: [Gauss-Jordan Elimination] Linear Algebra - Chapter 1

  15. Homogeneous Linear Systems The corresponding system of equations is Solving for the leading variables yields The general solution is the trivial solution is obtained when s=t=0 Linear Algebra - Chapter 1

  16. Homogeneous Linear Systems • Theorem: A homogeneous system of linear equations with more unknowns than equations has infinitely many solutions. Linear Algebra - Chapter 1

More Related