1 / 44

On a Theory of Similarity functions for Learning and Clustering

On a Theory of Similarity functions for Learning and Clustering. Avrim Blum Carnegie Mellon University This talk is based on work joint with Nina Balcan, Nati Srebro and Santosh Vempala. Theory and Practice of Computational Learning, 2009. 2-minute version.

raziya
Download Presentation

On a Theory of Similarity functions for Learning and Clustering

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. On a Theory of Similarity functions for Learning and Clustering Avrim Blum Carnegie Mellon University This talk is based on work joint with Nina Balcan, Nati Srebro and Santosh Vempala Theory and Practice of Computational Learning, 2009

  2. 2-minute version • Suppose we are given a set of images , and want to learn a rule to distinguish men from women. Problem: pixel representation not so good. • A powerful technique for such settings is to use akernel: a special kind of pairwise similarity function K( , ). • But, theory in terms of implicit mappings. Q: Can we develop a theory that just views K as a measure of similarity? Develop more general and intuitive theory of when K is useful for learning?

  3. 2-minute version • Suppose we are given a set of images , and want to learn a rule to distinguish men from women. Problem: pixel representation not so good. • A powerful technique for such settings is to use akernel: a special kind of pairwise similarity function K( , ). • But, theory in terms of implicit mappings. Q: What if we only have unlabeled data (i.e., clustering)? Can we develop a theory of properties that are sufficient to be able to cluster well?

  4. 2-minute version • Suppose we are given a set of images , and want to learn a rule to distinguish men from women. Problem: pixel representation not so good. • A powerful technique for such settings is to use akernel: a special kind of pairwise similarity function K( , ). • But, theory in terms of implicit mappings. Develop a kind of PAC model for clustering.

  5. Part 1: On similarity functions for learning

  6. Theme of this part • Theory of natural sufficient conditions for similarity functions to be useful for classification learning problems. Don’t require PSD, no implicit spaces, but includes notion of large-margin kernel. At a formal level, can even allow you to learn more (can define classes of functions with no large-margin kernel even if allow substantial hinge-loss but that do have a good similarity fn under this notion)

  7. + + - + + - - - Kernels • We have a lot of great algorithms for learning linear separators (perceptron, SVM, …). But, a lot of time, data is not linearly separable. • “Old” answer: use a multi-layer neural network. • “New” answer: use a kernel function! • Many algorithms only interact with the data via dot-products. • So, let’s just re-define dot-product. • E.g., K(x,y) = (1 + x¢y)d. • K(x,y) = (x) ¢(y), where () is implicit mapping into an nd-dimensional space. • Algorithm acts as if data is in “-space”. Allows it to produce non-linear curve in original space.

  8. x2 X X X X X X X X X X O X X X O X O O O X X X X x1 O O z1 O O O O O X O O O X X O X X O X X X X z3 X X X X X X X X X Example K(x,y) = (x¢y)d corresponds to E.g., for n=2, d=2, the kernel original space -space z2

  9. + +  +  + + - + - - - - Moreover, generalize well if good Margin • If data is linearly separable by large margin in -space, then good sample complexity. • Kernels useful in practice for dealing with many, many different kinds of data. If margin  in -space, then need sample size of only Õ(1/2) to get confidence in generalization. [no dependence on dimension] |(x)| · 1

  10. Limitations of the Current Theory In practice: kernels are constructed by viewing them as measures of similarity. Existing Theory:in terms ofmargins in implicit spaces. Not best for intuition. Kernel requirement rules out many natural similarity functions. Alternative, perhaps more general theoretical explanation?

  11. A notion of a good similarity function that is: [Balcan-Blum, ICML 2006] [Balcan-Blum-Srebro, MLJ 2008] [Balcan-Blum-Srebro, COLT 2008] • In terms of natural direct quantities. Main notion • no implicit high-dimensional spaces • no requirement that K(x,y)=(x) ¢ (y) Good kernels K can be used to learn well. First attempt 2) Is broad: includes usual notion of good kernel, has a large margin sep. in -space 3) Even formally allows you to do more.

  12. A First Attempt P distribution over labeled examples (x, l(x)) Goal: output classification rule good for P K is good if most x are on average more similar to points y of their own type than to points y of the other type. K is (,)-good for P if a 1-prob. mass of x satisfy: Ey~P[K(x,y)|l(y)=l(x)] ¸ Ey~P[K(x,y)|l(y)l(x)]+ gap Average similarity to points of the same label Average similarity to points of opposite label

  13. 0.4 0.5 -1 1 1 A First Attempt K is (,)-good for P if a 1-prob. mass of x satisfy: Ey~P[K(x,y)|l(y)=l(x)] ¸ Ey~P[K(x,y)|l(y)l(x)]+ Algorithm • Draw sets S+, S- of positive and negative examples. • Classify x based on average similarity to S+ versus to S-. S+ S- x x

  14. A First Attempt K is (,)-good for P if a 1-prob. mass of x satisfy: Ey~P[K(x,y)|l(y)=l(x)] ¸ Ey~P[K(x,y)|l(y)l(x)]+ Algorithm • Draw sets S+, S- of positive and negative examples. • Classify x based on average similarity to S+ versus to S-. If |S+| and |S-| are ((1/2) ln(1/’)), then with probability ¸1-, error · +’. Theorem

  15. more similar to - than to typical + A First Attempt: Not Broad Enough Ey~P[K(x,y)|l(y)=l(x)] ¸ Ey~P[K(x,y)|l(y)l(x)]+ + + + + + + 30o 30o ½ versus ½ ¢ 1 + ½ ¢ (- ½) = ¼ - - - - - - Similarity function K(x,y)=x ¢ y • has a large margin separator; does not satisfy our definition.

  16. + + + + + + - - - - - - A First Attempt: Not Broad Enough Ey~P[K(x,y)|l(y)=l(x)] ¸ Ey~P[K(x,y)|l(y)l(x)]+ R 30o 30o Broaden: 9 non-negligible R s.t. most x are on average more similar to y 2 R of same label than to y 2 R of other label. [even if do not know R in advance]

  17. F(P) Rd F Broader Definition (technically  hinge loss) K is (, , )-good if 9 a set R of “reasonable” y (allowprobabilistic) s.t. 1- fraction of x satisfy: Ey~P[K(x,y)|l(y)=l(x), R(y)] ¸ Ey~P[K(x,y)|l(y)l(x), R(y)]+ At least  prob. mass of reasonable positives & negatives. Algorithm • Draw S={y1, , yd} set of landmarks. Re-represent data. x ! F(x) = [K(x,y1), …,K(x,yd)]. P • If enough landmarks (d=(1/2  )),thenwith high prob. there exists a good L1 large margin linearseparator. • w=[0,0,1/n+,1/n+,0,0,0,-1/n-,0,0]

  18. F(P) Rd F Broader Definition (technically  hinge loss) K is (, , )–good if 9 a set R of “reasonable” y (allow probabilistic) s.t. 1- fraction of x satisfy: Ey~P[K(x,y)|l(y)=l(x), R(y)] ¸ Ey~P[K(x,y)|l(y)l(x), R(y)]+ At least  prob. mass of reasonable positives & negatives. Algorithm du=Õ(1/(2 )) dl=O((1/(2²acc))ln du) • Draw S={y1, , yd} set of landmarks. Re-represent data. x ! F(x) = [K(x,y1), …,K(x,yd)] P X X X X X O X X O O O O X O O X O X O O • Take a new set of labeled examples, project to this space, and run a good L1 linear separator alg. (e.g., Winnow etc).

  19. Good Similarities Large-margin Kernels Kernels and Similarity Functions Theorem K isa good kernel K is alsoa good similarity function. (butgets squared). • If K has margin  in implicit space, then for any , • K is (,2,)-good in our sense.

  20. Good Similarities Large-margin Kernels Kernels and Similarity Functions Theorem K isa good kernel K is alsoa good similarity function. (butgets squared). Can also show a separation. Theorem Exists class C, distrib D s.t. 9 a similarity function with large  for all f in C, but no large-margin kernel function exists.

  21. Kernels and Similarity Functions Theorem For any class C of pairwise uncorrelated functions, 9 a similarity function good for all f in C, but no such good kernel function exists. • In principle, should be able to learn from O(-1log(|C|/)) labeled examples. • Claim 1: can define generic (0,1,1/|C|)-good similarity function achieving this bound. (Assume D not too concentrated) • Claim 2: There is no (,) good kernel in hinge loss, even if =1/2 and =1/|C|1/2. So, margin based SC is d=(|C|).

  22. Learning with Multiple Similarity Functions • Let K1, …, Kr be similarity functions s. t. some (unknown) convex combination of them is (,)-good. Algorithm • Draw S={y1, , yd} set of landmarks. Concatenate features. F(x) = [K1(x,y1), …,Kr(x,y1), …, K1(x,yd),…,Kr(x,yd)]. • Run same L1 optimization algorithm as before in this new feature space.

  23. Learning with Multiple Similarity Functions • Let K1, …, Kr be similarity functions s. t. some (unknown) convex combination of them is (,)-good. Algorithm • Draw S={y1, , yd} set of landmarks. Concatenate features. F(x) = [K1(x,y1), …,Kr(x,y1), …, K1(x,yd),…,Kr(x,yd)]. Guarantee: Whp the induced distribution F(P) in R2dr has a separator of error · +  at L1 margin at least Sample complexity is roughly: Only increases by log(r) factor!

  24. Learning with Multiple Similarity Functions • Let K1, …, Kr be similarity functions s. t. some (unknown) convex combination of them is (,)-good. Algorithm • Draw S={y1, , yd} set of landmarks. Concatenate features. F(x) = [K1(x,y1), …,Kr(x,y1), …, K1(x,yd),…,Kr(x,yd)]. Guarantee: Whp the induced distribution F(P) in R2dr has a separator of error · +  at L1 margin at least Proof: imagine mapping Fo(x) = [Ko(x,y1), …,Ko (x,yd)], for the good similarity function Ko =1 K1 + …. + r Kr Consider wo =(w1, …, wd) of L1 norm 1, margin /4. The vector w =(1 w1 , 2 w1,…, r w1, …, 1 wd , 2 wd,…, r wd) also has norm 1 and has w¢F(x) = wo¢Fo(x).

  25. Learning with Multiple Similarity Functions • Because property defined in terms of L1, no change in margin! • Only log(r) penalty for concatenating feature spaces. • If L2, margin would drop by factor r1/2, giving O(r) penalty in sample complexity. • Algorithm is also very simple (just concatenate). • Alternative algorithm: do joint optimization: • solve for Ko = (1K1 + … + nKn), vector wo s.t. wo has good L1 margin in space defined by Fo(x) = [Ko(x,y1),…,Ko(x,yd)] • Bound also holds here since capacity only lower. • But we don’t know how to do this efficiently…

  26. Part 2: Can we use this angle to help think about clustering?

  27. Clustering comes up in many places • Given a set of documents or search results, cluster them by topic. • Given a collection of protein sequences, cluster them by function. • Given a set of images of people, cluster by who is in them. • …

  28. Can model clustering like this: [news articles] • Given data set S of n objects. • There is some (unknown) “ground truth” clustering • Goal: produce hypothesis clustering C1,C2,…,Ck that matches target as much as possible. Problem: no labeled data! But: do have a measure of similarity… [sports] [politics] C1*,C2*,…,Ck*. [minimize # mistakes up to renumbering of indices]

  29. What conditions on a similarity measure would be enough to allow one to cluster well? Can model clustering like this: [news articles] • Given data set S of n objects. • There is some (unknown) “ground truth” clustering • Goal: produce hypothesis clustering C1,C2,…,Ck that matches target as much as possible. Problem: no labeled data! But: do have a measure of similarity… [sports] [politics] C1*,C2*,…,Ck*. [minimize # mistakes up to renumbering of indices]

  30. What conditions on a similarity measure would be enough to allow one to cluster well? Contrast with more standard approach to clustering analysis: • View similarity/distance info as “ground truth” • Analyze abilities of algorithms to achieve different optimization criteria. • Or, assume generative model, like mixture of Gaussians • Here, no generative assumptions. Instead: given data, how powerful a K do we need to be able to cluster it well? min-sum, k-means, k-median,…

  31. What conditions on a similarity measure would be enough to allow one to cluster well? Here is a condition that trivially works: Suppose K has property that: • K(x,y) > 0 for all x,y such that C*(x) = C*(y). • K(x,y) < 0 for all x,y such that C*(x)  C*(y). If we have such a K, then clustering is easy. Now, let’s try to make this condition a little weaker….

  32. Math Physics What conditions on a similarity measure would be enough to allow one to cluster well? Suppose K has property that all x are more similar to all points y in their own cluster than to any y’ in other clusters. • Still a very strong condition. Problem: the same K can satisfy for two very different clusterings of the same data! baseball basketball

  33. What conditions on a similarity measure would be enough to allow one to cluster well? Suppose K has property that all x are more similar to all points y in their own cluster than to any y’ in other clusters. • Still a very strong condition. Problem: the same K can satisfy for two very different clusterings of the same data! baseball Math Physics basketball

  34. baseball Math all documents sports science Physics basketball baseball basketball math physics Let’s weaken our goals a bit… • OK to produce a hierarchical clustering (tree) such that target clustering is apx some pruning of it. • E.g., in case from last slide: • Can view as saying “if any of these clusters is too broad, just click and I will split it for you” • Or, OK to output a small # of clusterings such that at least one has low error (like list-decoding) but won’t talk about this one today.

  35. Then you can start getting somewhere…. “all x more similar to all y in their own cluster than to any y’ from any other cluster” 1. is sufficient to get hierarchical clustering such that target is some pruning of tree. (Kruskal’s / single-linkage works)

  36. Then you can start getting somewhere…. “all x more similar to all y in their own cluster than to any y’ from any other cluster” 1. is sufficient to get hierarchical clustering such that target is some pruning of tree. (Kruskal’s / single-linkage works) 2. Weaker condition: ground truth is “stable”: For all clusters C, C’, for all AµC, A’µC’: A and A’ not both more similar on avg to each other than to rest of own clusters. View K(x,y) as attraction between x and y (plus technical conditions at boundary) Sufficient to get a good tree using average single linkage alg.

  37. Analysis for slightly simpler version Assume for all C, C’, all A½C, A’µC’, we have K(A,C-A) > K(A,A’), and say K is symmetric. Algorithm: average single-linkage • Like Kruskal, but at each step merge pair of clusters whose average similarity is highest. Analysis: (all clusters made are laminar wrt target) • Failure iff merge C1, C2 s.t. C1½C, C2ÅC = . Avgx2A, y2C-A[S(x,y)]

  38. Analysis for slightly simpler version Assume for all C, C’, all A½C, A’µC’, we have K(A,C-A) > K(A,A’), and say K is symmetric. C3 Algorithm: average single-linkage • Like Kruskal, but at each step merge pair of clusters whose average similarity is highest. Analysis: (all clusters made are laminar wrt target) • Failure iff merge C1, C2 s.t. C1½C, C2ÅC = . • But must exist C3½C at least as similar to C1 as the average. Contradiction. Avgx2A, y2C-A[S(x,y)] C2 C1

  39. More sufficient properties: “all x more similar to all y in their own cluster than to any y’ from any other cluster” 3. But add noisy data. • Noisy data can ruin bottom-up algorithms, but can show a generate-and-test style algorithm works. • Create collection of plausible clusters. • Use series of pairwise tests to remove/shrink clusters until consistent with a tree

  40. More sufficient properties: “all x more similar to all y in their own cluster than to any y’ from any other cluster” 3. But add noisy data. 4. Implicit assumptions made by optimization approach: “Any approximately-optimal ..k-median.. solution is close (in terms of how pts are clustered) to the target.” [Nina Balcan’s talk on Saturday]

  41. Assume for all C, C’, all A½C, A’µC’, we have K(A,C-A) > K(A,A’)+, but only see small sample S Can also analyze inductive setting Can use “regularity” type results of [AFKK] to argue that whp, a reasonable size S will give good estimates of all desired quantities. Once S is hierarchically partitioned, can insert new points as they arrive.

  42. Like a PAC model for clustering • A property is a relation between target and similarity information (data). Like a data-dependent concept class in learning. • Given data and a similarity function K, a property induces a “concept class” C of all clusterings c such that (c,K) is consistent with the property. • Tree model: want tree T s.t. set of prunings of T form an -cover of C. • In inductive model, want this with prob 1-.

  43. Summary (part II) • Exploring the question: what does an algorithm need in order to cluster well? • What natural properties allow a similarity measure to be useful for clustering? • To get a good theory, helps to relax what we mean by “useful for clustering”. • User can then decide how specific he wanted to be in each part of domain. • Analyze a number of natural properties and prove guarantees on algorithms able to use them.

  44. Wrap-up • Tour through learning and clustering by similarity functions. • User with some knowledge of the problem domain comes up with pairwise similarity measure K(x,y) that makes sense for the given problem. • Algorithm uses this (together with labeled data in the case of learning) to find a good solution. • Goals of a theory: • Give guidance to similarity-function designer (what properties to shoot for?). • Understand what properties are sufficient for learning/clustering, and by what algorithms. • For learning, get theory of kernels without need for “implicit spaces”. • For clustering, “reverses” the usual view. Suggests giving the algorithm some slack (tree vs partitioning). • A lot of interesting questions still open in these areas.

More Related