240 likes | 323 Views
Learn to fit binomial GLMs for survival and parasitism, predict treatment effects, and simplify models using logical sequences. Understand ANCOVA, deletion tests, and stepwise regression techniques. Analyze species data with different distributions.
E N D
Workshop in R and GLMs: #4 Diane Srivastava University of British Columbia srivast@zoology.ubc.ca
Exercise • Fit the binomial glm survival = size*treat • 2. Fit the bionomial glm parasitism = size*treat • 3. Predict what size has 50% parasitism in treatment “0”
Predicting size for p=0.5, treat=0 Output from logistic regression with logit link: predicted loge (p/1-p) = a+bx So when p=0.5, solve log(1)=a+bx
What is equation for treat 0? treat 1? Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -2.38462 0.16780 -14.211 <2e-16 *** size 0.76264 0.04638 16.442 <2e-16 *** treat 0.28754 0.23155 1.242 0.214 size:treat -0.09477 0.06357 -1.491 0.136
Rlecture.csv 3.12
Model simplification • Parsimonious/ Logical sequence (e.g. highest order interactions first) • 2. Stepwise sequence • 3. Bayesian comparison of candidate models (not covered)
ANCOVA: Difference between categories…. Constant, doesn’t depend on size Depends on size size*treat sig size*treat ns 12 10 8 Logit parasitism Logit parasitism 6 4 2 0 0 2 4 6 Plant size Plant size
Deletion tests • How to change your model quickly: • model2<-update(model1,~.-size:treat) • How to do a deletion test: • anova(reduced model, full model, test="Chi") • Test for interaction in logit parasitism ANCOVA • If not sig, remove and continue. If sig, STOP! • 2. Test covariate If not sig, remove and continue. If sig, put back and continue • 3. Test main effect
Code for “parasitism” analysis > ds<-read.table(file.choose(), sep=",", header=TRUE); ds > attach(ds) > par<-cbind(parasitism, 100-parasitism); par > m1<-glm(par~size*treat, data=ds, family=binomial) > summary(m1) > m2<-update(m1, ~.-size:treat) > summary(m2) > anova(m2,m1, test="Chi") > m3<-update(m2, ~.-size) > anova(m3,m2, test="Chi") > m3<-update(m2, ~.-treat) > anova(m3,m2, test="Chi")
Context (often) matters! What is the p-value for treat in: size+treat? treat? Stepwise regression: step(model)
Jump height (how high ball can be raised off the ground) 8 9 10 11 Feet off ground Total SS = 11.11
X variable parameter SS F1,13 p Height +0.943 9.96 112 <0.0001 of player
X variable parameter SS p Weight +0.040 7.92 32 <0.0001 of player F1,13
An idea Perhaps if we took two people of identical height, the lighter one might actually jump higher? Excess weight may reduce ability to jump high…
X variable parameter SS F p Height +2.133 9.956 803 <0.0001 Weight -0.059 1.008 81 <0.0001 lighter heavier
Tall people can jump higher Heavy people often tall (tall people often heavy) + Height Jump + - Weight People light for their height can jump a bit more
Species.txt Rothamsted Park Grass experiment started in 1856
Exercise (species.txt) diane<-read.table(file.choose(), header=T); diane; attach(diane) Univariate trends: plot(Species~Biomass) plot(Species~pH) Combined trends: plot(Species~Biomass, type="n"); points(Species[pH=="high"]~Biomass[pH=="high"]); points(Species[pH=="mid"]~Biomass[pH=="mid"], pch=16); points(Species[pH=="low"]~Biomass[pH=="low"], pch=0)
Exercise (species.txt) 1. With a normal distribution, fit pH*Biomass • check model dignostics • test interaction for significance 2. With a poisson distribution, fit pH *Biomass • check model dignostics • test interaction for significance
Moral of the story: Make sure you KNOW what you are modelling!
Exercise (species.txt) 1. Fit glm: Species~pH, family=gaussian 2. Test if low and mid pH have the same effect • this is a planned comparison
Further reading Statistics: An Introduction using R (M.J. Crawley, Wiley publishers) Extending the linear model with R (JJ Faraway, Chapman & Hall/CRC)
Code for “Species” analysis > m1<-glm(Species~pH*Biomass, family=gaussian, data=diane) > summary(m1) > m2<-update(m1, ~.-pH:Biomass) > anova(m2,m1, test="Chi") > par(mfrow=c(2,2)); plot(m1) > m3<-glm(Species~pH*Biomass, family=poisson, data=diane) > m4<-update(m3, ~.-pH:Biomass) > anova(m4,m3, test="Chi") > par(mfrow=c(2,2)); plot(m3) >PH<-(pH!="high")+0 > m5<-glm(Species~pH, family=gaussian, data=diane) > m6<-update(m5, ~.-pH+PH) > anova(m6,m5, test="Chi")