580 likes | 721 Views
第五章 数控伺服系统. §5.1 概述. 一、伺服系统的基本概念. 数控伺服系统主要是指各坐标轴进给驱动的位置控制系统。按其功能分为 进给和主轴两种伺服系统。. 主轴伺服系统 用于控制机床主轴的转动。 进给伺服系统 是以机床移动部件(如工作台)的位置和速度作为控制量的自动控制系统,它根据数控装置发出的指令信号精确地控制执行部件的运动速度与位置,以及几个执行部件按一定规律运动所合成的运动轨迹。. 伺服驱动电路. 工作台. 指令. 速度控制 单元. 位置控制模块. 位置检测. 伺服电机. 测量反馈. 图 5-1 闭环进给伺服系统结构. 二、伺服系统的组成.
E N D
第五章 数控伺服系统 §5.1概述 一、伺服系统的基本概念 数控伺服系统主要是指各坐标轴进给驱动的位置控制系统。按其功能分为进给和主轴两种伺服系统。 主轴伺服系统用于控制机床主轴的转动。 进给伺服系统是以机床移动部件(如工作台)的位置和速度作为控制量的自动控制系统,它根据数控装置发出的指令信号精确地控制执行部件的运动速度与位置,以及几个执行部件按一定规律运动所合成的运动轨迹。
伺服驱动电路 工作台 指令 速度控制单元 位置控制模块 位置检测 伺服电机 测量反馈 图5-1 闭环进给伺服系统结构 二、伺服系统的组成 伺服系统由伺服电路、伺服驱动装置、机械传动部件及执行部件组成。
二、数控机床对伺服系统的要求 1、高的位移精度(定位精度) 伺服系统的位移精度是指指令脉冲要求的位移量和实际位移量之间的误差大小,误差愈小,精度愈高。 2、速度响应快 快速响应是伺服系统动态品质的重要指标,它反映了系统跟踪精度。 3、调速范围宽 调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。一般要求调速范围>1000,且为无级调速。
4、低速大扭矩 机床加工的特点是,在低速时进行重切削。因此,伺服系统在低速时要求有大的转矩输出 5、稳定性好 稳定性是指系统在给定外界干扰作用下,经在短暂的调节后,能达到新的或者恢复到原来平衡状态的能力。稳定性直接影响数控加工精度和表面粗糙度。 三、伺服系统的类型 按其控制原理和有无位置反馈分为开环半闭环和闭环伺服系统;按其用途和功能分为进给和主轴驱动系统;按其驱动执行元件的动作原理分为电液和电气伺服驱动系统。电气伺服驱动系统又分为直流、交流及直线电动机伺服系统。
图5-1 三相步进电机的结构原理图 §5.2伺服系统的驱动元件 一、步进电动机 1、步进电动机的工作原理
1 2 4 3 图5-2 A通电状态 (1)三相步进电机按单三拍逆时针转动,即A-B-C-A
1 2 4 3 (1)三相步进电机按单三拍逆时针转动,即A-B-C-A 图5-2 B通电状态
1 2 4 3 (1)三相步进电机按单三拍逆时针转动,即A-B-C-A 图5-2 C通电状态
2 3 1 4 (1)三相步进电机按单三拍逆时针转动,即A-B-C-A 图5-2 A通电状态
1 2 4 3 图5-3 A通电状态 (2)三相步进电机按单三拍顺时针转动,即A-C-B-A
4 1 3 2 图5-3 B通电状态 (2)三相步进电机按单三拍顺时针转动,即A-C-B-A
4 3 1 2 图5-3 C相通电状态 (2)三相步进电机按单三拍顺时针转动,即A-C-B-A
3 4 2 1 图5-3 A相通电状态 (2)三相步进电机按单三拍顺时针转动,即A-C-B-A
1 2 4 3 图5-4 A相通电 (3)三相步进电机按六拍逆时针转动,即A-AB-B-BC-C-CA-A
1 2 4 3 (3)三相步进电机按六拍逆时针转动,即A-AB-B-BC-C-CA-A 图5-4 AB相通电
1 2 4 3 (3)三相步进电机按六拍逆时针转动,即A-AB-B-BC-C-CA-A 图5-4 B相通电
1 2 4 3 (3)三相步进电机按六拍逆时针转动,即A-AB-B-BC-C-CA-A 图5-4 BC相通电
1 2 4 3 (3)三相步进电机按六拍逆时针转动,即A-AB-B-BC-C-CA-A 图5-4 C相通电
1 2 4 3 (3)三相步进电机按六拍逆时针转动,即A-AB-B-BC-C-CA-A 图5-4 CA相通电
1 2 4 3 (3)三相步进电机按六拍逆时针转动,即A-AB-B-BC-C-CA-A 图5-4 A相通电
2.步进电机的特性 (1)步进电机每输入一个脉冲,绕组的通电状态就变换一次,电机就相应地转动一步,因此角位移与输入脉冲个数成严格比例关系。 (2)一旦停止输入控制脉冲,只要维持绕组一定的通电电流,转子就可以保持在其固定的位置上,具有电磁锁定功能,不需要机械制动。 (3)改变绕组的通电顺序,就可以改变转子的旋转方向。 (4)转子的转速与输入的脉冲频率成正比。 (5)步距角α与通电拍数n、转子的齿数 z有关,状态系数k(单、双拍),可用下式表示:
3.步进电动机主要性能参数及其选用 (1) 步距角α α越小, 控制精度越高, (2) 步距误差Δα 步距误差是指步进电机运行时,转子每一步实际转过的角度与理论步距角之差值。连续走若干步时,上述步距误差的累积值称为步距的累积误差。步进电机的步距累积误差将以一转为周期重复出现。根据机床的定位精度选Δα。 (3) 最高起动频率 f q 是指从静止状态突然起动而不丢步的最高频率,又叫突跳频率。它与负载力矩和传动系统惯性力矩有关,这两种力矩越大, f q 越低,这个关系称为惯频特性,如图5-5所示。
图5-5 起动惯性特性曲线 (4)、最高连续运行频率 f max 步进电机匀速运行时,不步丢步的最高脉冲频率,它表明步进电机所能达到的最高速度,根据负载和速度选 f max(如图5-6所示)。
图5-6 步进电机的距频特性 3、步进电机的驱动电路 驱动电路的三大功能:变频、环分、功放。 由此可知驱动电路的组成:如图5-7所示 ,由变频信号源、脉冲分配器、功率放大器三块组成。
Xa 方向指令 步进 电动机 变频信号器 Xb 脉冲分配器 功率放大器 步进指令 Xc 图5-7 步进电机驱动电路的组成 变频信号源是频率连续可调的脉冲信号发生器,它根据步进电机转速变化的需要把不同频率的脉冲送到脉冲分配器。 脉冲分配器又叫环分器,它按一定的顺序开启或关断功率放大器,使步进电机的各相绕组轮流通电。环形分配器功能可由硬件或软件产生。 功率放大器有单电压和高低压切换型,它们构成不同,性能不同,价格也不同,根据需要选用。
图5-8 单电压驱动电路 单电压驱动电路的优点是线路简单,缺点是电流上升不够快,高频时带负载能力低。
图5-9 高低电压驱动电路 其优点是能在较宽的频率范围内有较大的平均电流,能产生较大且较稳定的电磁转矩,缺点是高低压电路波形连接处有凹形。
A P1.2 B 8031 P1.1 C P1.0 图5-10 软件完成的环分框图 4、步进电动机的软件环分电路 环分功能也能用软件实现。
表1 三相六拍环形分配器真值表 方向 A B C 序号 1 1 0 0 反转 正转 2 1 1 0 3 0 1 0 4 0 1 1 5 0 0 1 6 1 0 1
二、直流伺服电动机 直流伺服系统就是控制直流电机的系统。目前使用较多的是永磁式直流伺服电机,其特点是调速范围宽,输出转矩大,过载能力强,而且电机转动惯量较大,应用较方便 。 1、小惯量直流伺服电动机 这种电动机的转动惯量很小,机械时间常数小,加减速能力强,响应快,动态特性好。用于点位控制机床,以及一些负载较小的机床。如:数控激光、数控电火花机床等。 2、大惯量直流伺服电动机 这种伺服电动机的结构: 其定子磁极是个永久磁体,所以又叫永磁直流伺服电动机。由于这种电动机的调速范围很宽,又叫宽调速电机。
小惯量电机是从减小电机的转动惯量来提高快速性。小惯量电机是从减小电机的转动惯量来提高快速性。 大惯量伺服电机则是用提高转距的方法来改善其快速性。它具有转矩大、过载能力强、动态响应好、调速范围宽、运转平稳等优点。同时配有高精度的检测元件,可构成闭环、半闭环伺服系统。 缺点是:快速响应性不如小惯量电机,用于精度中等的机床。用在加工中心上较好、适宜。 三、直流调速技术 (一)、直流电机的调速原理
Rf Ia If Uf U Ra n Rt 图5-11 他励直流电动机驱动电路 在定子磁场中,受到电磁转距M的作用,使电机旋转。电磁转矩为:
kT—电机的转矩系数( kT =cmφ) Ia—电机电枢电流 Ea=ken Ea—电机转动产生的反电动势; ke—电势系数( ke =ceφ); n—电枢转速rpm。 它的电枢电路的电动势平衡方程为:
感应电动势(反电动势)为: (2)代入(1)得: 式中:n——电机转速(rpm); U——电枢电路外加电压(V); R a——电枢电路电阻(); C e——反电动势系数; ——气隙磁通量(W b)。
从上式可以看出, 要改变直流电动机的转速n, 有三种方法: (1)改变电枢回路电阻R a, 这使转速只能调低不能调高。 (2)改变励磁回路电阻R f, 以改变I f, 从而改变值, 但I f只能减小,转速只能调高,不能调低,可见这两种方法都不能满足数控机床的要求。 (3)改变电枢电压,其它都不变,尽管需要附加调压设备,但它的调速范围大, 又是恒扭矩调速,所以直流伺服电机常用这种方法调速。
(二)直流电机的调速方法 ① 直流发电机—直流电动机(G-M)系统。 它是通过改变发电机的输出电压(此电压加到电机上)来改变电动机转速的调速方法。 ② 晶闸管—直流电动机(SCR-M)系统。 它是通过改变晶闸管的导通角,来控制供给直流电动机的输入电压,实现调速的。 ③ 脉宽调制—直流电动机(PWM)系统 。 它是利用一定频率的三角波或锯齿波,把模拟控制电压分割成与三角波同频率的矩形波,通过控制矩形波的占空比来改变直流电机的输入电压,实现调速的。 该方法主要优点是抗干扰能力强,效率高。
三角波 反馈比较电压 流过电机的电流波形 图5-12 PWM调压的原理图
四、交流伺服电动机调速技术 交流伺服电动机结构简单、成本低廉、无电刷磨损问题、维修方便。 一、交流调速的类型 式中 n—电机的转速; S—转差率 ; P— 定子绕组的极对数 ; f1—供电频率 。
(1) 变极调速—对鼠笼式异步电动机改变其定子绕组的极对数P,此为有级调速。 (2) 变转差率调速—对绕线式异步电动机转子绕组串接电阻的调阻调速等,可实现无级调速。 (3) 变频调速—改变供电频率的调速方案有交—交变频器; 交—直—交电压源型变频器;脉宽调制型逆变器。 三、交流电动机的变频调速 变频调速是以一个频率及电压可变的电源,向异步(或同步)电动机供电,从而调节电动机转速的方法。 变频调速可分为两类:第一类由恒频恒压的交流电,经过整流再逆变成变频变压的交流电,称为带直流环节的间接变频调速或交一直一交变频。
整流 滤波 逆变 M 图5-14 电压型变频器基本结构 第二类是由恒频恒压的交流电,直接变成变频变压的交流电,称为直接变频调速或交一交变频。 电压型变频器
当定子电压与频率成正比改变时,即 式中 U1e—电动机的额定相电压; U1—电动机的实际相电压; f1e—电动机的额定定子频率; f1—电动机的实际定子频率。 此时电动机的输出为恒转矩,输出的功率与定子电流频率成正比。 当定子电压与频率的平方根成正比改变时,即 电动机输出恒功率,输出的转矩与定子电流频率成反比。
P + SCR1 SCR3 SCR5 D5 D1 D3 U SCR6 SCR4 D2 D4 D6 SCR2 N - B O A 图5-15 三相桥式逆变电路 与晶闸管反并联的二极管的作用是在该晶闸管由截止转为导通时,给负载滞后电流提供一个通道,将无功能量反馈给滤波电容。
电压负反馈电路 M 控制角调整器 速度给定器 电压调节器 + 整流 M 逆变 U/F变换器 脉冲分配器 图5-16 电压型变频系统方框图 这种线路结构简单,使用比较广泛。其缺点是在深度控制时,电源侧功率因数低;因存在较大的滤波环节,动态响应较慢。 图5-16为一种电压闭环、频率开环的电压型变频系统的方框图。
这个系统能带动多台电机转动。由于直流输出电压稳定,因此异步电动机的转速精度仅决定于U/F变换器的精度及电机本身的转差率。 上述调速装置的缺点有: (1) 需两套可控的功率级装置及其控制电路,装置庞大。 (2) 因可控整流输入端的功率因数随输出电压而变化,若输出电压低时功率因数也低。 (3) 由于滤波环节的惯性作用,便调压动态过程缓慢,影响系统的快速性。
§5.2伺服系统的故障形式及诊断方法 一、主轴伺服系统的故障形式及诊断方法 当主轴伺服系统发生故障时,通常有三种表现形式: (1) 在CRT或操作面板上显示报警内容或报警信息; (2) 在主轴驱动装置上用报警灯或数码管显示主轴驱动装置的故障; (3) 是主轴工作不正常,但无任何报警信息。主轴伺服系统常见故障有:
1. 外界干扰 由于受电磁干扰,屏蔽和接地措施不良,主轴转速指令信号或反馈信号受到干扰,使主轴驱动出现随机和无规律性的波动。判别有无干扰的方法是:当主轴转速指令为零时,主轴仍往复转动,调整零速平衡和漂移补偿也不能消除故障。 2.过载 切削用量过大,频繁正、反转等均可引起过载报警。具体表现为主轴电动机过热、主轴驱动装置显示过电流报警等。 3.主轴定位抖动 主轴准停用于刀具交换、精镗退刀及齿轮换挡等场合,有三种实现方式:
(1) 机械准停控制 由带V形槽的定位盘和定位用的液压缸配合动作。 (2) 磁性传感器的电气准停控制 发磁体安装在主轴后端,磁传感器安装在主轴箱上,其安装位置决定了主轴的准停点,发磁体和磁传感器之间的间隙为(1.5±0.5)mm。 (3) 编码器型的准停控制 通过主轴电动机内置安装或在机床主轴上直接安装一光电编码器来实现准停控制,准停角度可任意设定。 上述准停均要经过减速的过程,如减速或增益等参数设置不当,均可引起定位抖动。另外,准定方式(1)中定位液压缸活塞移动的限位开关失灵,准定方式(2)中发磁体和磁传感器之间的间隙发生变化或磁传感器失灵均可引起定位抖动。
4.主轴转速与进给不匹配 当进行螺纹切削或用每转进给指令切削时,会出现停止进给、主轴仍继续运转的故障。要执行每转进给的指令,主轴必须有每转一个脉冲的反馈信号,一般情况下为主轴编码器有问题。可用以下方法来确定: ① CRT画面有报警显示; ② 通过CRT调用机床数据或I/O状态,观察编码器的信号状态; ③ 用每分钟进给指令代替每转进给指令来执行程序,观察故障是否消失。
5.转速偏离指令值 当主轴转速超过技术要求所规定的范围时,要考虑: ① 电动机过载; ② CNC系统输出的主轴转速模拟量(通常为0~±10V)没有达到与转速指令对应的值; ③ 测速装置有故障或速度反馈信号断线; ④主轴驱动装置故障。