1 / 44

Faddeev Calculation for Neutron-Rich Nuclei

Faddeev Calculation for Neutron-Rich Nuclei. Focus on He isotopes. Eizo Uzu (Tokyo Univ. of Science). Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.) Yasuro Koike (Hosei Univ., CNS). TUNL Nuclear Data Evaluation Project. (unit: MeV).

rad
Download Presentation

Faddeev Calculation for Neutron-Rich Nuclei

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Faddeev Calculationfor Neutron-Rich Nuclei Focus on He isotopes Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi(RCNP) Hiroyuki Kamada(Kyusyu Inst. Tech.) Yasuro Koike(Hosei Univ., CNS)

  2. TUNL Nuclear Data Evaluation Project (unit: MeV) http://www.tunl.duke.edu/nucldata/ (extraction) unbound bound

  3. He isotopes (even nuclei) Borromean-nuclei n unbound n n unbound n unbound unbound unbound unbound 4He 6He 6He 8He 3-cluster model

  4. TUNL Nuclear Data Evaluation Project (unit: MeV) http://www.tunl.duke.edu/nucldata/ (extraction) Borromean

  5. He isotopes (even nuclei) Borromean-nuclei series n n n n n n 4He 6He 8He 6He 8He 10He Faddeev equations 3-cluster model

  6. 6He 6Li • A. Eskandarian and I. R. Afnan, PRC46, 1992 (2344). • T = 1: • Faddeev eqs. • Yamaguchi-type potentials • 1S0 for n-n • S1/2, P1/2, and P3/2 for 4He-n

  7. Checking on 6Li T = 1 (in MeV)

  8. 6He 6Li • A. Eskandarian and I. R. Afnan, PRC46, 1992 (2344). • T =1: • Faddeev eqs. • Yamaguchi-type potentials • 1S0 for n-n • S1/2, P1/2, and P3/2 for 4He-n • Apply to 8He and 10He with our extention

  9. TUNL Nuclear Data Evaluation Project (unit: MeV) http://www.tunl.duke.edu/nucldata/ (extraction)

  10. Odd Nuclei

  11. Odd Nuclei

  12. Odd Nuclei

  13. TUNL Nuclear Data Evaluation Project (unit: MeV) http://www.tunl.duke.edu/nucldata/ (extraction)

  14. Even Nuclei

  15. Even Nuclei

  16. Interesting Nature “He” isotopes are getting stable with increasing the number of neutrons … ? Remembering the three-nucleon forces… N N N The binding energy of 3H becomes deeper D N N N

  17. TUNL Nuclear Data Evaluation Project (unit: MeV) http://www.tunl.duke.edu/nucldata/ (extraction) Core excitation is important!

  18. Brief Summary • 6He, 8He, 10He … Borromean-nuclei series • 4He, 6He, 8He … Core: Ground states • 6He*, 8He* … Core: Excited states • 5He, 7He, 9He … resonances • Faddeev eqs. • employ Yamaguchi-type potentials for n-n and (core)-n subsystems

  19. Potentials between (core)-n • 8He, 10He … Borromean-nuclei series • 6He, 8He … Core: Ground states • 6He*, 8He* … Core: Excited states n n n n couple couple 6He 7He 6He* 8He 9He 8He*

  20. Potentials between (core)-n • 7He, 9He … resonances • employ Yamaguchi-type potentials for n-n and (core)-n systems • Fix the parameters to reproduce energy levels and decay widths for 7He and 9He n n n n couple couple 6He 7He 6He* 8He 9He 8He*

  21. Potentials between 8He-n • for the study of 10He Separable Potential n n 8He 8He* 1 2 Yamaguchi-type form factor ci: mixing parameter (state probability) bi : “width” parameter `i : angular momentum

  22. Potentials between 8He-n • parameters: c1, c2, b1, b2 b1, b2 = 1.5166 fm-1 fixed (fit to 5He data) c1, c2 Fit! 8He* determined uniquly 8He 10He 8He 9He

  23. Ground (0+) State of 10He Jp of 9He Jp of 9He* E (MeV) G (MeV) -0.187 3/2- 1/2- 0.591 0.131 1/2+ -0.534 1/2- 3/2- 1/2+ 3/2+ -1.862 1/2+ 1/2- 0.306 0.034 1/2- 1/2+ 0.657 0.782 exp. 1.07 0.3

  24. Potentials between 6He-n • parameters: c1, c2, b1, b2 b1, b2 = 1.5166 fm-1 fixed (fit to 5He data) c1, c2 Fit! determined uniquly 6He* 6He 6He 7He 8He

  25. Ground (0+) State of 8He

  26. 0+ 66.2% 6He* 33.8% n n n n n n n n n n n n n n 2+ 6He 6He 6He 6He 6He 6He State Probability + 66.2% 8He + 33.8%

  27. Summary • Study the He isotopes (Borromean nuclei) • within the 3-cluster model … core + 2n • The three-body Faddeev eqs. • Yamaguchi-type potentials • parameters are fit to the smaller next odd nuclei • taking into account the core excitation • states of 9He(1/2-) and 9He*(1/2+) (for 10He) • probability of 6He(66.2%) and 6He*(33.8%) in 8He

  28. ti R(E) E Outlook For improvement the potentials … • Response function of the Coulomb break-up reactions (e.g. 8He + Pb) • compare directly with the experimental data

  29. simulation (integrate ±0.3MeV) 0.02 0.01 0.00 0 1 2 3 4 c.m. energy (MeV) Response Function (preliminary) for 8He + Pb reaction only include 0+ state of (6He + 2n) our prediction 8He 2nd 0.02 8He 1st 7He 1st R(E) (MeV-1) 7He g.s. 0.01 0.00 0 1 2 3 4 c.m. energy (MeV)

  30. Summary • Study the He isotopes (Borromean nuclei) • within the 3-cluster model … core + 2n • The three-body Faddeev eqs. • Yamaguchi-type potentials • parameters are fit to the smaller next odd nuclei • taking into account the core excitation • states of 9He(1/2-) and 9He*(1/2+) (for 10He) • probability of 6He(66.2%) and 6He*(33.8%) in 8He

  31. n n n n n n 6He 6He 6He Reaction • Low energy reaction of (core + 2n) + (heavy ion) e.g. (8He + Pb) Coulomb interaction Pb

  32. n n 6He Cross Section Coulomb scattering response function : W.F. of the bound state : W.F of the final (continuum) state ( ) : Momentum shift op. projection op. Pb

  33. n n 6He Brief Summary Faddeev Eqs. (Faddeev-like eqs.) v3 v1 v2

  34. n n 6He Brief Summary fitting potential parameters to peaks of the response function ti v3 R(E) v1 v2 E

  35. n n 6He Response Function v3 v1 v2

  36. n n n n n n 6He 6He 6He Three-Cluster System 2 2 1 2 1 1 3 3 3 channel 1 channel 2 channel 3 (Faddeev theory) ti : T-matrix for two-body subsystem

  37. 0+ 66.2% 6He* 33.8% n n n n n n n n n n n n 2+ 6He 6He 6He State Probability (preliminary) + 66.2% 8He + 33.8% 8He(0+) 48.8% 10He 51.2% 8He*(2+)

  38. TUNL Nuclear Data Evaluation Project (unit: MeV) http://www.tunl.duke.edu/nucldata/ (extraction)

  39. Application : He isotopes • Binding Energy :: 6He < 8He • Resonance Levels :: 5He ¼7He ¼9He • Decay Width :: 5He > 7He ¼9He • Is nucleus stable with increasing neutron?

  40. TUNL Nuclear Data Evaluation Project (unit: MeV) http://www.tunl.duke.edu/nucldata/ (extraction) not well established

  41. 8He 8He* 8He n n n n 8He-n coupling channel 1 channel 2 TUNL Nuclear Data Evaluation Project http://www.tunl.duke.edu/nucldata/ 6He+2n (extraction) unit: MeV 8He 9He 10He

  42. Neutron-rich Nuclei 3-cluster model Faddeev Equations n n Exact treatment of the break-up thresholds (or boundary conditions) core Focus on “He” isotopes

  43. Yamaguchi-type Pot. (for the first attempt) Separable Potential Yamaguchi-type form factor • ci: mixing parameter • (state probability) • : coupling constant bi : “width” parameter `i : angular momentum ti R(E) E

  44. Content • Motivation • Potential Model • Calculations

More Related