1 / 12

§1. 3 极限的运算法则

§1. 3 极限的运算法则. 一、四则运算法则. 二、复合函数的极限运算法则. 首页. 上页. 返回. 下页. 结束. 铃. ( 3 ). 一、四则运算法则. 定理 1 如果 lim f ( x ) = A  lim g ( x ) = B  则 ( 1 ) lim[ f ( x )  g ( x )] = lim f ( x )  lim g ( x ) = A  B . ( 2 ) lim f ( x )  g ( x ) = lim f ( x )  lim g ( x ) = A  B .

rachel
Download Presentation

§1. 3 极限的运算法则

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. §1. 3 极限的运算法则 一、四则运算法则 二、复合函数的极限运算法则 首页 上页 返回 下页 结束 铃

  2. (3) 一、四则运算法则 定理1如果 lim f(x)=A lim g(x)=B则 (1)lim[f(x)g(x)]=limf(x)limg(x)=AB (2)lim f(x)g(x)=lim f(x)lim g(x)=AB (limg(x)=B≠0) 推论 lim [cf(x)]=c lim f(x) lim [f(x)]n=[lim f(x)]n  下页

  3. 例1 • 讨论 • 求极限举例 =2-1=1 解: • 提示 • 设多项式P(x)a0xn  a1xn1    an则 a0x0na1x0n1    anP(x0) 下页

  4. 例2 解: 分母的极限不为0,分子分母分别求极限,再相除。 下页

  5. 例3 解: 分子分母的极限都为0,约去公因子。 下页

  6. 讨论 • 提示 当Q(x0)P(x0)0时 约去分子分母的公因式(xx0)  下页

  7. 例5 例6 解: 先用x3去除分子及分母 然后取极限 解: 先用x3去除分子及分母 然后取极限 下页

  8. 例7 所以 解: • 讨论 • 提示 下页

  9. 定理2 二、复合函数的极限运算法则 • 说明 下页

  10. 例8 求 解 下页

  11. 例9 求 解 下页

  12. 例10 求 解 结束

More Related