1 / 38

Distance Functions on Hierarchies

Distance Functions on Hierarchies. Eftychia Baikousi. Outline. Definition of metric & similarity Various Distance Functions Minkowski Set based Edit distance Basic concept of OLAP Lattice Distance in same level of hierarchy Distance in different level of hierarchy.

quincy
Download Presentation

Distance Functions on Hierarchies

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Distance Functions on Hierarchies Eftychia Baikousi

  2. Outline • Definition of metric & similarity • Various Distance Functions • Minkowski • Setbased • Editdistance • Basic concept of OLAP • Lattice • Distance in same level of hierarchy • Distance in different level of hierarchy

  3. Definition of metric • A distance function on a given set M is a function d:MxM , that satisfies the following conditions: • d(x,y)≥0 and • d(x,y)=0 iff x=y • Distance is positive between two different points and is zero precisely from a point to itself • It is symmetric: d(x,y)=d(y,x) • The distance between x and y is the same in either direction • It satisfies the triangleinequality: d(x,z) ≤ d(x,y)+ d(y,z) • The distance between two points is the shortest distance along any path • Is a metric

  4. Definition of similarity metric • Let s(x,y) be the similarity between two points x and y, then the following properties hold: • s(x,y) =1 only if x=y (0≤ s ≤1) • s(x,y) =s(y,x)x and y (symmetry) • The triangle inequality does not hold

  5. Outline • Definition of metric & similarity • Various Distance Functions • Minkowski • Setbased • Editdistance • Basic concept of OLAP • Lattice • Distance in same level of hierarchy • Distance in different level of hierarchy

  6. Minkowski Family

  7. Set Based

  8. Edit Distance- Levenshtein distance • Edit distance between two strings x=x1 ….xn, y=y1…ym is defined as the minimum number of atomic edit operations needed • Insert : ins(x,i,c)=x1x2…xicxi+1…xn • Delete : del(x,i)=x1x2…xi-1xi+1…xn • Replace : rep(x,i,c)=x1x2…xi-1cxi+1…xn • Assign cost for every edit operation c(o)=1

  9. Edit distances • Needleman-Wunch distance or Sellers Algorithm • Insert • a characterins(x,i,c)=x1x2…xicxi+1…xn • with cost(o)=1 • a gap ins_g(x,i,g)=x1x2…xigxi+1…xn • withcost(o)=g • Delete • a characterdel(x,i)=x1x2…xi-1xi+1…xn • withcost(o)=1 • a gapdel_g(x,i)=x1x2…xi-1xi+1…xn • withcost(o)=g • Replace • a characterrep(x,i,c)=x1x2…xi-1cxi+1…xn • withcost(o)=1

  10. Edit distances • Jaro distance • Let two strings s and t and • s’= characters in s that are common with t • t’ = characters in t that are common with s • Ts,t=number of transportations of characters in s’ relative to t’

  11. Edit distances • Jaro distance Example • Let s =MARTHA and t =MARHTA • |s’|=6 • |t’|=6 • Ts,t = 2/2since mismatched characters are T/H and H/T

  12. Edit distances • Jaro Winkler • JWS(s,t)= Jaro(s,t) + ((prefixLength * PREFIXSCALE * (1.0-Jaro(s,t))) • Where: • prefixLength : the length of common prefix at the start of the string • PREFIXSCALE: a constant scaling factor which gives more favourable ratings to strings that match from the beginning for a set prefix length

  13. Edit distances • Jaro Winkler Example • Let s =MARTHA and t =MARHTA and PREFIXSCALE = 0.1 • Jaro(s,t)=0.8055 • prefixLength=3 • JWS(s,t)= Jaro(s,t) + ((prefixLength * PREFIXSCALE * (1.0-Jaro(s,t))) = 0.8055 + (3*0.1*(1-0.8055)) = 0.86385

  14. Outline • Definition of metric & similarity • Various Distance Functions • Minkowski • Setbased • Editdistance • Basic concept of OLAP • Lattice • Distance in same level of hierarchy • Distance in different level of hierarchy

  15. Βασικές Έννοιες OLAP • Αφορά την ανάλυση κάποιων μετρήσιμων μεγεθών (μέτρων) • πωλήσεις, απόθεμα, κέρδος,... • Διαστάσεις: παράμετροι που καθορίζουν το περιβάλλον (context) των μέτρων • ημερομηνία, προϊόν, τοποθεσία, πωλητής, … • Κύβοι: συνδυασμοί διαστάσεων που καθορίζουν κάποια μέτρα • Ο κύβος καθορίζει ένα πολυδιάστατο χώρο διαστάσεων, με τα μέτρα να είναι σημεία του χώρου αυτού

  16. REGION W S N Juice 10 Cola 13 PRODUCT Soap Jan MONTH Κύβοι για OLAP

  17. Κύβοι για OLAP

  18. Βασικές Έννοιες OLAP • Τα δεδομένα θεωρούνται αποθηκευμένα σε ένα πολυδιάστατο πίνακα (multi-dimensional array), ο οποίος αποκαλείται και κύβος ή υπερκύβος (Cube και HyperCube αντίστοιχα). • Ο κύβος είναι μια ομάδα από κελιά δεδομένων (data cells). Κάθε κελί χαρακτηρίζεται μονοσήμαντα από τις αντίστοιχες τιμές των διαστάσεων (dimensions)του κύβου. • Τα περιεχόμενα του κελιού ονομάζονται μέτρα (measures) και αναπαριστούν τις αποτιμώμενες αξίες του πραγματικού κόσμου.

  19. Ιεραρχίες επιπέδων για OLAP • Μια διάσταση μοντελοποιεί όλους τους τρόπους με τους οποίους τα δεδομένα μπορούν να συναθροιστούν σε σχέση με μια συγκεκριμένη παράμετρο του περιεχομένου τους. • Ημερομηνία, Προϊόν, Τοποθεσία, Πωλητής, … • Κάθε διάσταση έχει μια σχετική ιεραρχία επιπέδωνσυνάθροισης των δεδομένων (hierarchy of levels). Αυτό σημαίνει, ότι η διάσταση μπορεί να θεωρηθεί από πολλά επίπεδα αδρομέρειας. • Ημερομηνία: μέρα, εβδομάδα, μήνας, χρόνος, …

  20. Ιεραρχίες Επιπέδων • ΙεραρχίεςΕπιπέδων: κάθε διάσταση οργανώνεται σε διαφορετικά επίπεδα αδρομέρειας • Ο χρήστης μπορεί να πλοηγηθεί από το ένα επίπεδο στο άλλο, δημιουργώντας νέους κύβους κάθε φορά Αδρομέρεια: το αντίθετο της λεπτομέρειας -- ο σωστός όρος είναι αδρομέρεια...

  21. Sales volume Region Product Month Κύβοι & ιεραρχίες διαστάσεων για OLAP Διαστάσεις: Product, Region, DateΙεραρχίες διαστάσεων: Country Year Industry Category Region Quarter City Week Product Month Day Store

  22. Outline • Definition of metric & similarity • Various Distance Functions • Minkowski • Setbased • Editdistance • Basic concept of OLAP • Lattice • Distance in same level of hierarchy • Distance in different level of hierarchy

  23. Lattice • A lattice is a partially ordered set (poset) in which every pair of elements has a unique supremum and an inifimum • The hierarchy of levels is formally defined as a lattice (L,<) • such that L= (L1, ..., Ln, ALL) is a finite set of levels and • < is a partial order defined among the levels of L • such that L1<Li<ALL  1≤i≤n. • the upper bound is always the level ALL, • so that we can group all values into the single value ‘all’. • The lower bound of the lattice is the most detailed level of the dimension.

  24. Outline • Definition of metric & similarity • Various Distance Functions • Minkowski • Setbased • Editdistance • Basic concept of OLAP • Lattice • Distance in same level of hierarchy • Distance in different level of hierarchy

  25. Distances in the same level of Hierarchy • Let a dimension D, • its levels of hierarchies L1<Li<ALL and • two specific values x and y s.t. x, y Li All L2 L1

  26. Distances in the same level of Hierarchy • Explicit • Minkowski • Set Based • Highway • With respect to the detailed level • Attribute Based

  27. Distances in the same level of Hierarchy • Explicit assignment • n2 distances for the n values of the dom(Li) • Minkowski family • reduce to the Manhattan distance: |x-y| • Set based family • reduced to {0, 1}, where

  28. Distances in the same level of Hierarchy • Highway distance • Let the values of level Liform a set of k clusters, where each cluster has a representative rk • dist(x, y)= dist(x, rx)+ dist(rx, ry)+ dist(y, ry) • Specify • k2 distances: dist (rx, ry) and • k distances: dist(x, rx)

  29. Distances in the same level of Hierarchy • With respect to the detailed level • f is a function that picks one of the descendants • Attribute based •  level L  attributes: •  v [v1 … vn]  dom(L) • Distance can be defined with respect to the attributes

  30. Outline • Definition of metric & similarity • Various Distance Functions • Minkowski • Setbased • Editdistance • Basic concept of OLAP • Lattice • Distance in same level of hierarchy • Distance in different level of hierarchy

  31. Distances in different levels of Hierarchy • Explicit • dist1+ dist2 • dist3+dist4 • With respect to the detailed level • With respect to their least common ancestor • Highway • Attribute Based

  32. dist2 xy y Ly dist1 dist3 Lx yx x dist4 Distances in different levels of Hierarchy • Let a dimension D, • its levels of hierarchies L1<Li<ALL • two specific values x and y s. t. xLx yLy • Lx<Ly • ancestor ofxin levelLy • a descendant ofyin levelLx

  33. dist2 xy y Ly dist1 dist3 Lx yx x dist4 Distances in different levels of Hierarchy • Explicit assignment • define distLx,Ly(x, y)x  Lx, y Ly • dist1 +dist2 • Where is a distance of two values from the same level of hierarchy • special case: y is an ancestor of xthen dist2=0

  34. dist2 xy y Ly dist1 dist3 Lx yx x dist4 Distances in differentlevels of Hierarchy • dist3 +dist4 • Wherea distance of two values from the same level of hierarchy • special case: y is an ancestor of xthen dist4=0

  35. Distances in different levels of Hierarchy • With respect to the detailed level • Let and • Wheredist(x1, y1)a distance of two values from the same level of hierarchy

  36. Distances in different levels of Hierarchy • With respect to their commonancestor • Let Lzthe level of hierarchy where x and y have their first common ancestor • number of “hops” needed to reach the first common ancestor • normalizing according to the height of the level

  37. Distances in different levels of Hierarchy • Highway distance • Let every Li is clustered into ki clusters and every cluster has its own representativerki • Attribute Based •  level L  attributes: •  v [v1 … vn]  dom(L) • Distance can be defined with respect to the attributes

  38. Types of Levels • Nominal =  • values hold the distinctness property • values can be explicitly distinguished • Ordinal < > • values hold the distinctness property & the order property • values abide by an order • Interval + - • values hold the distinctness, order & the addition property • a unit of measurement exists • there is meaning of the difference between two values

More Related