1 / 10

II. pH (p. 481 – 491)

II. pH (p. 481 – 491). Ch. 18-3 – Acids & Bases. Self-Ionization of Water. Two water molecules produce a hydronium ion and a hydroxide ion by transfer of a proton: H 2 O + H 2 O H 3 O + + OH - The concentrations of H 3 O + and OH - in pure water are each

quang
Download Presentation

II. pH (p. 481 – 491)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. II. pH(p. 481 – 491) Ch. 18-3 – Acids & Bases

  2. Self-Ionization of Water • Two water molecules produce a hydronium ion and a hydroxide ion by transfer of a proton: H2O + H2O H3O+ + OH- • The concentrations of H3O+ and OH- in pure water are each 1.0 x 10-7 mol/L at 25oC • Concentration is represented by [ ] Ex. [H3O+] means “hydronium ion concentration in moles per liter” So… [H3O+] = 1.0 x 10-7M and [OH-] = 1.0 x 10-7M

  3. Self-Ionization of Water Cont… • Since the product of these ions remains the same in water and dilute aqueous solutions at constant temperature, we have what is called “the ionization constant of water”: Kw = [H3O+][OH-] = 1.0 x 10-14M2 • Recall that strong acids and strong bases dissociate completely in aqueous solutions. So, we can say that one mole of a strong acid will yield one mole of H3O+, and one mole of a strong base will yield one mole of OH-. • We can use this information to find the concentration of these ions in different solutions.

  4. Practice • Find the hydroxide ion concentration of 3.0 x 10-2M HCl. [H3O+][OH-] = 1.0 x 10-14 [3.0 x 10-2][OH-] = 1.0 x 10-14 [OH-] = 3.3 x 10-13M • Acidic or basic? Acidic • How do you know?...

  5. pH Scale 0 14 7 Increasing Neutral Increasing Acidity Basicity • Useless Fact! – pH stands for pouvior hydrogene, meaning “hydrogen power.” • pH is defined as the negative of he common logarithm of the hydronium ion concentration, or simply: pH = -log[H3O+] • If a neutral solution has a [H3O+] of 1 x 10-7, then: pH = -log(1 x 10-7) = - (-7.0) = 7.0

  6. pH Scale Continued… • Likewise, pOH is defined as the negative of the natural logarithm of the hydroxide ion concentration, or simply: pOH = -log[OH-] • If a neutral solution has a [OH-] of 1 x 10-7, then: pOH = -log(1 x 10-7) = -(-7.0) = 7.0 • Since [H3O+] gives us pH, and [OH-] gives us pOH, and both are related by Kw: Kw = [H3O+][OH-] = 1 x 10-14, -log(Kw) = -log(1 x 10-14) = 14.0 • Therefore, we can say that: pH + pOH = 14.0

  7. pH of Some Common Substances

  8. Summary of Equations • Kw = [H3O+][OH-] = 1 x 10-14 • pH = -log[H3O+] • pOH = -log[OH-] • pH + pOH = 14.0

  9. Practice • What is the pH of 0.050M HNO3? pH = -log[H3O+] pH = -log[0.050] pH = 1.3 • Acidic or Basic? Acidic

  10. Practice • What is the molarity of HBr in a solution that has a pOH of 9.6? * We want the molarity of HBR, which is an acid, so we want to start with finding the pH: pH + pOH = 14 pH + 9.6 = 14 pH = 4.4 * Next we can use the pH equation to find [H3O+]: pH = -log[H3O+] 4.4 = -log[H3O+] -4.4 = log[H3O+] (use the inverse log function on your calculator to find this) [H3O+] = 4.0 x 10-5M HBr

More Related