1 / 9

不可直接分離變數型

不可直接分離變數型.  y' = f ( y / x )  y' = f ( a x + b y )  ( a 1 x + b 1 y + c 1 ) d x + ( a 2 x + b 2 y + c 2 ) d y = 0  y . f ( x y ) d x + x . g ( x y ) d y = 0  以上四種類型皆難以直接分離變數 , 必須藉由適當之 「變數變換」 始可作 變數分離 。. 不可直接分離變數型之一. y  y ' = f ( ---- ) x y  變數變換: 令 u ≡ ----

Download Presentation

不可直接分離變數型

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 不可直接分離變數型 y' = f (y/x) y' = f (ax+by) (a1x+b1y+c1)dx+(a2x+b2y+c2)dy=0 y.f(xy)dx+x.g(xy)dy=0 以上四種類型皆難以直接分離變數, 必須藉由適當之「變數變換」始可作 變數分離。 d6

  2. 不可直接分離變數型之一 y y' = f(----) x y 變數變換:令u≡---- x d6

  3. yy【例】解 y' = ---- - (----)2xx --------------------------------------------------------- y Sol.令 u≡----,即 y = ux且dy = udx + xdu, x 則原式為 udx + xdu = (u-u2)dx, 重新合併成 xdu + u2dx = 0, dudx 同除 xu2作變數分離:----- + -----= 0, u2x 1 積分得 - ---- + ln|x|= C, u x 即 - ---- + ln|x|= C。 y

  4. 【例】解 xdy + (xey/x-y)dx = 0 --------------------------------------------------------- y Sol.令 u≡----,即 y = ux且dy = udx + xdu, x 則原式為 x(udx+xdu)+(xeu-ux)dx = 0, 重新合併成 xdu + eudx = 0, dx 同除 xeu作變數分離:e-udu + -----= 0, x 積分得 -e-u + ln|x|= C, 即 -e-y/x + ln|x|= C。 d6

  5. 【練習】試解 (y2-x2)dx-2xydy = 0 ----------------------------------------------------------------- y y Sol.原式同除 x2,得 [(----)2-1]dx –2(----)dy = 0; x x y 令 u≡----,即 y = ux且dy = udx + xdu, x 則原式為 (u2-1)dx –2u(udx + xdu) = 0, 即 2xudu + (u2+1)dx = 0, 2u 1 同除 x(u2+1) 成 --------du + ----dx = 0; u2+1 x 積分得 ln(u2+1)+ ln|x|= c或 x(u2+1) = c1, 即 y2+x2 = c1x。

  6. 不可直接分離變數型之二  y' = f (ax+by) 變數變換:令 u≡ax+by d6

  7. 【例】解 y' = x + y --------------------------------------------------------- Sol.原式為y' = f(ax+by)型,故令u≡x+y, 即 y = u-x且 dy = du-dx, 則原式為du-dx = udx或du=(u+1)dx, 各項同除 (u+1) 後積分如下: 1 ∫------- du =∫dx + C, u+1 得 ln|u+1| = x+C, 即 ln|x+y+1| = x+C。

  8. 【例】解 y' = tan2(x + y) --------------------------------------------------------- Sol.原式為y' = f(ax+by)型,故令u≡x+y, 即 y = u-x且 dy = du-dx, 則原式為du-dx = tan2udx, 重組成 cos2udu = dx後積分如下: ∫cos2udu =∫dx + C, 得 2u+sin2u = 4x+C1, 即 2(x+y)+sin2(x+y) = 4x+C1。 d6

  9. 【練習】解 y' = (y-4x)2 --------------------------------------------------------- Sol.原式為y'=f(ax+by)型,故令u≡y-4x, 即 y = u+4x且 dy = du+4dx, 則原式為du+4dx = u2dx或du=(u2-4)dx 各項同除 (u2-4) 後積分如下: 1 |u-2| ∫------- du =∫dx+C,得 ln-------- =4x+C u2-4 |u+2| |y-4x-2| 即 ln-------------- = 4x+C。 |y-4x+2|

More Related