380 likes | 396 Views
This workshop at Jefferson Lab delved into GPDs, TMDs, PDFs, and more, exploring the upgrade's capabilities with detailed kinematic projections and flavor separation techniques.
E N D
Prospects for GPD and TMD studies at the JLab Upgrade Volker D. Burkert Jefferson Lab • Introduction • JLab Upgrade and CLAS12 • GPDs from DVCS and DVMP • TMDs from SIDIS and SSA • Summary SIR Workshop – Jefferson Lab, May 17-20, 2005
3-D Scotty z 2-D Scotty z x y 1-D Scotty Water Calcium probablity Carbon x x GPDs, TMDs & PDFs This Workshop – GPDs, TMDs Deeply Inelastic Scattering, PDFs
Add new hall CHL-2 Enhance equipment in existing halls E= 2.2, 4.4, 6.6, 8.8, 11 GeV Beam polarization Pe > 80% JLab Upgrade to 12 GeV Energy 12 GeV
CLAS12 • Nearly full angle coverage for tracking and g, ndetection • High luminosity, 1035 cm-2s-1 • Concurrent measurement • of deeply virtual exclusive, • semi-inclusive, and inclusive • processes. EC Cerenkov Drift Chambers TOF Cerenkov Torus Central Detector Beamline IEC Design luminosity = 1035cm-2s-1
p- e- e- p g g K+ CLAS12 - Central Detector High Q2, low t ep eK+S0(gL(pp-)) event Silicon tracker, calorimetry, ToF Solenoid magnet, Bcenter = 5 T
CLAS 12- Expected Performance Forward Detector Central Detector Angular coverage: Tracks (inbending) 8o - 40o 40o - 135o Tracks (outbending) 5o - 40o 40o - 135o Photons 2o - 40o 40o - 135o Track resolution: dp (GeV/c) 0.003p + 0.001p2 dpT=0.03pT dq (mr) < 1 (>2.5 GeV/c) 8 (1 GeV/c) df (mr) < 3 (> 2.5 GeV/c) 2 (1 GeV/c) Photon detection: Energy range > 150 MeV > 60 MeV dE/E 0.09(EC)/0.04(IEC) 0.06 (1 GeV) dq (mr) 4 (1 GeV) 15 (1 GeV) Neutron detection: heff 0.5 (EC), 0.1 (TOF) 0.04 (TOF) Particle id: e/p >>1000 ( < 5 GeV/c) - >100 ( > 5 GeV/c) - p/K (4s) < 3 GeV/c (TOF) 0.65 GeV/c 3 - 10 GeV/c (CC) p/p (4s) < 5 GeV/c (TOF) 1.2 GeV/c 3 - 10 GeV/c (CC) K/p(4s) < 3.5 GeV/c (TOF) 0.9 GeV/c
H1, ZEUS Deeply Virtual Exclusive Processes - Kinematics Coverage of the 12 GeV Upgrade H1, ZEUS 27 GeV 11 GeV 11 GeV 200 GeV JLab Upgrade JLab @ 12 GeV COMPASS W = 2 GeV HERMES Study of high xB domain requires high luminosity 0.7
ep egp Q2 > 2.5 GeV2 Central Detector Forward Detector ep ep+X Acceptance for DVCS, SIDIS qg xB = 0.35 EC IEC Q2
Ds 2s ep epg s+ - s- s+ + s- A = = x = xB/(2-xB) k = t/4M2 Separating GPDs through polarization Polarized beam, unpolarized target: ~ ~ DsLU~ sinf{F1H+ x(F1+F2)H+kF2E}df H, H, E Kinematically suppressed Unpolarized beam, longitudinal target: ~ ~ H, H DsUL~ sinf{F1H+x(F1+F2)(H+ … }df Unpolarized beam, transverse target: H, E DsUT~ sinf{k(F2H – F1E) + …..}df
ALU B DVCS/BH- Beam Asymmetry ~ ~ Ee = 11 GeV DsLU~ sinf{F1H+ x(F1+F2)H+kF2E}df ALU CLASpreliminary E=5.75 GeV <Q2> = 2.0GeV2 <x> = 0.3 <-t> = 0.3GeV2 f [rad]
Q2=5.5GeV2 xB = 0.35 -t = 0.25 GeV2 CLAS12 - DVCS/BH- Beam Asymmetry Ee = 11 GeV Luminosity = 720fb-1
e p epg L = 1x1035 T = 2000 hrs DQ2 = 1 GeV2 Dx = 0.05 CLAS12- DVCS/BH Beam Asymmetry E = 11 GeV DsLU~sinfIm{F1H+..}df Sensitive to GPDH Selected Kinematics
Q2=3.5 GeV2 bval=bsea=1 MRST02 NNLO distribution • Other kinematics measured concurrently GPDs H from expected DVCS ALUdata p
L = 2x1035 cm-2s-1 T = 1000 hrs DQ2 = 1GeV2 Dx = 0.05 e p epg E = 11 GeV E=5.75 GeV AUL CLAS preliminary <Q2> = 2.5GeV2 <x> = 0.25 <-t> = 0.25GeV2 CLAS12-DVCS/BH Target Asymmetry Longitudinally polarized target ~ Ds~sinfIm{F1H+x(F1+F2)H...}df
Sample kinematics e p epg E = 11 GeV Q2=2.2 GeV2, xB = 0.25, -t = 0.5GeV2 • Asymmetry highly sensitive to the u-quark contributions to proton spin. CLAS12- DVCS/BH Target Asymmetry Transverse polarized target Ds ~ sinfIm{k1(F2H– F1E) +…}df AUTx Target polarization in scattering plane AUTy Target polarization perpedicular to scattering plane
GPDs – Flavor separation DVMP DVCS long. only hard gluon hard vertices M = r0/r+ select H, E, for u/d flavors M = p, h, K select H, E Photons cannot separate u/d quark contributions.
xB = 0.3-0.4 -t = 0.2-0.3GeV2 sL sT Other bins measured concurrently CLAS12– L/T Separationep epro (p+p-) Projections for 11 GeV (sample kinematics) • Test of Bjorken scaling • Power corrections?
Q2=5 GeV2 Exclusiver0 production on transverse target 2D (Im(AB*))/p T AUT = - |A|2(1-x2) - |B|2(x2+t/4m2) - Re(AB*)2x2 A~ 2Hu + Hd r0 B~ 2Eu + Ed Eu, Edneeded for angular momentum sum rule. r0 K. Goeke, M.V. Polyakov, M. Vanderhaeghen, 2001 B
CLAS 5.7 GeV r+ n Exclusive r+with transverse target Strong sensitivity to d-quark contributions. A~ Hu - Hd B ~ Eu - Ed AUT r+
1 1 1 [ ] ò = - J G = x + x J q xdx H q( x , , 0 ) E q( x , , 0 ) 2 2 - 1 X. Ji, Phy.Rev.Lett.78,610(1997) Quark Angular Momentum Sum Rule With GPDs Hu, Hd, Eu, Edobtain access to total quark contribution to proton angular momentum. Large x contributions important.
Wpu(x,k,r) “Parent” Wigner distributions d3r TMD TMD PDFs: fpu(x,kT),g1,f┴1T, h┴1L Measure momentum transfer to quark. Transverse Momentum Dependent PDFs (TMDs) Probability to find a quark u in a nucleon P with a certain polarization in a position r and momentum k d2kT (FT) GPD GPDs: Hpu(x,x,t), Epu(x,x,t),… Measure momentum transfer to nucleon.
SIDIS at leading twist e Boer e p Mulders e p transversity Sivers Off-diagonal PDFs vanish if quarks only in s-state! In addition T-odd PDFs require FSI(Brodsky et al., Collins, Ji et al. 2002)
Azimuthal Asymmetry – Sivers Effect Originates in the quark distribution. It is measured in the azimuthal asymmetry with transverse polarized target. sin(f-fs) f1TD1 T AUT ~ k Requires: non-trivial phase from the FSI + interference between different helicity states (S. Brodsky)
sin(f-fs) (P /M)AUT T SIDIS Azimuthal Asymmetry - Sivers effect • Probes orbital angular momentum of quarks by measuring the imaginary part ofs-p-wave interference in the amplitude. T • Extraction of Sivers function f1T from asymmetry.
CLAS12- Sivers function from AUT (p0) Efremov et al (large xB behavior of f1T from GPD E) In large Nc limit: F1T=∑qeq2f1T┴q f1Tu = -f1Td CLAS12 projected CLAS12 projected xB xB
sin(f+fs) sUT~ k h1H1 T Azimuthal Asymmetry - Collins Effect • Access to transversity distribution and fragmentation of polarized quarks.
x=0.4 1.5 fm 0 CAT scan slice of human abdomen z -1.5 y x=0.9 1 fm flavor polarization 0 X. Ji -1 u-quark charge density distribution Tomographic Images of the Nucleon dX(x,b ) uX(x,b ) T T M. Burkardt Ed(x,t) Eu(x,t)
DDVCS DVCS asymmetry Cross section DDVC rates reduced by more than factor 200 e-p e-pe+e- Double DVCS (DDVCS)
e+ e- e- p CLAS12 – Acceptance for DDVCS
Summary • The JLab 12 GeV Upgrade is essential for the study of nucleon structure in the valence region with high precision: • - deeply virtual exclusive processes (DVCS, DVMP) • - semi-inclusive meson production with polarized beam • and polarized targets • Provide new and deeper insight into • - quark orbital angular momentum contributions • to the nucleon spin • - 3D structure of the nucleon’s interior and correlations • - quark flavor polarization • - ….. • CLAS12 will be world wide the only full acceptance, general purpose detector for high luminosity electron scattering experiments, and is essential for the GPD/TMD program.
New Collaborators are welcome!
Sivers effect in the target fragmentation xF>0 (current fragmentation) xF<0 (target fragmentation) xF- momentum in the CM frame Wide kinematic coverage of CLAS12 allows studies of hadronization in the target fragmentation region
T T sUL ~ k h1LH1 KM Collins Effect and Kotzinian-Mulders Asymmetry Measures the Collins fragmentation with longitudinally polarized target. Access to the real part of s-p wave interference amplitudes.
T T sUL ~ (1-y) h1LH1 KM Collins Effect and Kotzinian-Mulders Asymmetry Measures the Collins fragmentation with longitudinally polarized target. Access to the real part of s-p wave interference amplitudes.
` CLAS12-L(1115) Polarization E = 11 GeV ep eL(pp-)X (SIDIS) K K*(892)
e 1 Λ p 2 L polarization in the target fragmentation e’