550 likes | 957 Views
Quantum exotic states in correlated topological insulators. Su-Peng Kou ( 寇谡鹏 ) Beijing Normal University. Outline. Motivation Topological spin density waves in correlated topological insulators Quantum spin liquid states in correlated topological insulators Conclusion.
E N D
Quantum exotic states in correlated topological insulators Su-Peng Kou (寇谡鹏) Beijing Normal University
Outline Motivation Topological spin density waves in correlated topological insulators Quantum spin liquid states in correlated topological insulators Conclusion [1] Kou SP,PHYS. REV. B 78, 233104(2008). [2] Sun GY and Kou SP, EPL, 87 67002 (2009). [3] Kou SP, and Liu LF,EUR. PHYS. J. B. 81, 165 (2011) . [4] Sun GY and Kou SP, J. Phys. C 23 (2011) 045603. [5] He J, Kou SP, Liang Y, Feng SP, PHYS. REV. B 83, 205116 (2011) . [6] He J, Zong YH, Kou SP, Liang Y, Feng SP, PHYS. REV. B84, 035127 (2011) . [7] He J, Liang Y, Kou SP, PHYS. REV. B.85, 205107 (2012). [8] He J, Wang B, Kou SP, PHYS. REV. B. submitted, arXiv:1204.4766. [9] Kou SP, “Insulators: Types, Properties and Uses” (Nova Science Publishers).
I.Motivation:Lookfor quantum exotic states in correlated topological insulator X. G. Wen, Quantum Field Theory of Many-Body Systems
Spin liquid – emergent in physics No broken symmetry + Deconfined spinons + Emergent gauge field Spin liquid
Spin orders in strongly correlated electron systems G. Misguich, arXiv:cond-mat/0310405
II. Topological spin density wave states in correlated topologicalinsulators Instability of an interacting fermion system with topologically nontrivial band structure • Interacting spinful Haldane model • Interacting Kane-Mele model
The spinful Haldane model– spin rotation symmetry, no T symmetry
The Kane-Mele model – T symmetry, no spin rotation symmetry Kane and Mele, Phys. Rev. Lett. 95, 146802 (2005) http://www.physics.upenn.edu/~kane/
Possible quantum spin liquid in the interacting Kane-Mele model – T symmetry, no spin rotation symmetry Slave-rotor theory: Stephan Rachel and Karyn Le Hury, Phys. Rev. B 82. 075106 (2010) QMC: M. Hohenadler, T. C. Lang, F. F. Assaad, Phys. Rev. Lett. 106, 100403 (2011) Dong Zheng, Congjun Wu and Guang-Ming Zhang, Phys. Rev. B 84, 205121 (2011) DMF: Wei Wu, S. Rachel, Wu-Ming Liu, K. Le Hur, Phys. Rev. B 85, 205102 (2012) VCA : Shun-Li Yu, X.C. Xie, Jian-Xin Li, Phys. Rev. Lett. 107, 010401 (2011)
1. Topological spin-density-wave states in interacting spinful Haldane model - spin rotation symmetry, no T symmetry What is the ground state for the spinful Haldane model with the on-site interaction? He J, Zong YH, Kou SP, Liang Y, Feng SP, PHYS. REV. B84, 035127 (2011)
Mean field approach M is the staggered magnetization. Mean field equation where
Phase diagram C=2 topological insulator - QAH A-type topological SDW order Band insulator B-type topological SDW order Trivial AF-SDW order
spin-charge synchronization charge-flux binding effect in B-TSDW
Different spin-density-wave states in correlated topological insulators with the same local order parameter may have different topological properties, including the induced quantum numbers on topological objects, the edge states, the quantum Hall effects.
2. Quantum spin orders in correlated topological insulator with flat-band
What is the ground state for the correlated topological insulators in the flat-band limit? • What’s the dispersion of electrons and spin waves for correlated topological insulators in the flat-band limit?
Phase diagram : electrons on TFB FM (topological) spin-density-wave d is the hole concentration.
A-TSDW : Half filling case Dispersion of electrons in A-TSDW A-TSDW Dispersion of spin-waves in A-TSDW TFB TFB AF-SDW
FM (topological) spin-density-wave: quarter filling case Dispersion of electrons in FM order Dispersion of spin wave in FM order
FM order and AF order :d=0.3 filling case Order parameters Dispersion of electrons
III. Quantum spin liquids in interacting spinful Haldane model • Short range A-type topological spin density wave state: chiral spin liquid • Short range B-type topological spin density wave state : composite spin liquid
Quantum spin-fluctuations in topological spin density wave states Transverse spin susceptibility is Spin coupling constant X. G. Wen, Quantum Field Theory of Many-Body Systems, (Oxford Univ. Press, Oxford, 2004) Spin wave velocity One obtains spin stiffness and the transverse spin susceptibility: H.J. Schulz, in The hubbard Model, edited by D. Baeriswyl(Plenum, New York, 1995). Z. Y. Weng, C. S. Ting, and T. K. Lee, Phys. Rev. B43, 3790 (1991). K. Borejsza, N. Dupuis, Euro Phys. Lett. 63, 722 (2003); Phys. Rev. B 69, 085119 (2004).
Spin coupling constant t’=0.1t t’=0.0228t
? ? ?
S. Chakravarty, et al., Phys. Rev. B 39, 2344 (1989). What is the nature of the quantum disordered states for TSDWs?
Properties of chiral spin liquid • Spinon is semion with fractional statistics • Ground state degeneracy : 2 on torus • Chiral gapless edge states He J, Liang Y, Kou SP, PHYS. REV. B.85, 205107 (2012). X. G.Wen, F.Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989).
C=2 topological insulator Chiral spin liquid A-TSDW Trvial AF order
π- vortex issemion • Statistics angle θ= π/2 With induced fermion number , π-vortex becomes semion.
Composite spin liquid spin liquid
S=1/2, charge e fermion ? g > gc g < gc
IV. Conclusion ? To be confirmed by QMC, …
1. Spin liquid in the π-flux Hubbard model and the Hubbard model on honeycomb lattice
Quantum spin liquid near Mott transition of π-flux Hubbard model Sun GY and Kou SP, EPL, 87 67002 (2009). Kou SP, Liu LF, He J, Wu YJ,EUR. PHYS. J. B. 81, 165 (2011).
Gapless Z2 topological spin liquid There are three types of quasi-particles : gapped fermionic spinons, gapped bosonic spinons and the gapped gauge field.
Nodal spin liquid There are three types of quasi-particles : gapless fermionic spinons, gapped bosonic spinons and the roton-like gauge field.
Results from QMC Chia-Chen Chang and Richard T. Scalettar, Phys. Rev. Lett. 109, 026404 (2012)
Global Phase diagram by spin-fluctuation theory Sun GY and Kou SP, J. Phys. C. 23 (2011) 045603