the physiology and biochemistry of the paleolithic diet for weight reduction n.
Skip this Video
Loading SlideShow in 5 Seconds..
The physiology and biochemistry of the Paleolithic Diet for weight reduction PowerPoint Presentation
Download Presentation
The physiology and biochemistry of the Paleolithic Diet for weight reduction

Loading in 2 Seconds...

play fullscreen
1 / 12

The physiology and biochemistry of the Paleolithic Diet for weight reduction - PowerPoint PPT Presentation

  • Uploaded on

The physiology and biochemistry of the Paleolithic Diet for weight reduction. David C. Pendergrass, Ph.D. University of Kansas. Glycolysis to Lipogenesis. TRPV1 Hypothesis. Nociceptor. Sensory Neuron. monocyte. β - cell. TRPV1 – Physiological Mediator. Nociception Inflammation

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about 'The physiology and biochemistry of the Paleolithic Diet for weight reduction' - pravat

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
the physiology and biochemistry of the paleolithic diet for weight reduction

The physiology and biochemistry of the Paleolithic Diet for weight reduction

David C. Pendergrass, Ph.D.

University of Kansas


TRPV1 Hypothesis


Sensory Neuron


β- cell

trpv1 physiological mediator
TRPV1 – Physiological Mediator
  • Nociception
  • Inflammation
  • Infection
  • Immunity: Exposure to TRPV1 agonists
    • Keratinocytes  PGE2 & IL-8
    • PBMC  apoptosis
  • Alimentary tract:
    • Metabolism
    • Hair growth regulation
    • Cancer development
  • Reduced obesity
  • Smooth muscle cell regulation
  • Anorexigenic signaling
  • Agonists
    • Thermosensing >43C; pain
    • Protons (pH < 5.2)
    • Capsaicin
    • Depolarizing voltage > + 60 mv (outwardly rectifying)
    • Stretch
  • Sensitizing molecules
    • 17-β-estradiol
    • Anandamide
    • Olvanil
    • Omega-3 polyunsaturated FA
    • 12-hydroperoxyeicosatetranoic acid (12-HPETE)
    • N-arachidonyl dopamine (NADA)
    • 2-aminoethoxydiphenyl borate (2-APB)
    • Inflammatory mediators
      • Growth factors
      • Neurotransmitters: bradykinin, serotonin, histamine, prostaglandins
      • Peptides and small proteins
      • Lipids
      • Chemokines
      • Cytokines
    • Intracellular phosphorylation
      • PKC
      • PKA
      • Tyrosine receptors kinases
      • Ca2+/CAM Kinase
  • Desensitizing molecules
    • PIP2
sing a long
  • If you’re healthy and you know it:
  • If you’re healthy and you know it, Modern People gotta show it, if you’re healthy and you know it:
  • Eat GOOD meat
  • Don’t eat wheat
  • Eat GOOD fish
  • Make the switch
  • Eat your greens
  • Buy new jeans
  • Ahren, B. and M. Pettersson. "Calcitonin Gene-Related Peptide (Cgrp) and Amylin and the Endocrine Pancreas." Int J Pancreatol 6, no. 1 (1990): 1-15.
  • Akiba, Y., S. Kato, K. Katsube, M. Nakamura, K. Takeuchi, H. Ishii and T. Hibi. "Transient Receptor Potential Vanilloid Subfamily 1 Expressed in Pancreatic Islet Beta Cells Modulates Insulin Secretion in Rats." BiochemBiophys Res Commun 321, no. 1 (2004): 219-25.
  • Burcelin, R., W. Dolci and B. Thorens. "Glucose Sensing by the Hepatoportal Sensor Is Glut2-Dependent: In Vivo Analysis in Glut2-Null Mice." Diabetes 49, no. 10 (2000): 1643-8.
  • Gao, H., K. Miyata, M. D. Bhaskaran, A. V. Derbenev and A. Zsombok. "Transient Receptor Potential Vanilloid Type 1-Dependent Regulation of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus Diminished in the Type 1 Diabetic Mouse." Diabetes 61, no. 6 (2012): 1381-90.
  • Gonzalez, J. A., F. Reimann and D. Burdakov. "Dissociation between Sensing and Metabolism of Glucose in Sugar Sensing Neurones." J Physiol 587, no. Pt 1 (2009): 41-8.
  • Gram, D. X., B. Ahren, I. Nagy, U. B. Olsen, C. L. Brand, F. Sundler, R. Tabanera, O. Svendsen, R. D. Carr, P. Santha, N. Wierup and A. J. Hansen. "Capsaicin-Sensitive Sensory Fibers in the Islets of Langerhans Contribute to Defective Insulin Secretion in Zucker Diabetic Rat, an Animal Model for Some Aspects of Human Type 2 Diabetes." Eur J Neurosci 25, no. 1 (2007): 213-23.
  • Guillot, E., A. Coste and I. Angel. "Involvement of Capsaicin-Sensitive Nerves in the Regulation of Glucose Tolerance in Diabetic Rats." Life Sci 59, no. 12 (1996): 969-77.
  • Hu, S. S., H. B. Bradshaw, V. M. Benton, J. S. Chen, S. M. Huang, A. Minassi, T. Bisogno, K. Masuda, B. Tan, R. Roskoski, Jr., B. F. Cravatt, V. Di Marzo and J. M. Walker. "The Biosynthesis of N-Arachidonoyl Dopamine (Nada), a Putative Endocannabinoid and Endovanilloid, Via Conjugation of Arachidonic Acid with Dopamine." Prostaglandins LeukotEssent Fatty Acids 81, no. 4 (2009): 291-301.
  • Karlsson, S., A. J. Scheurink, A. B. Steffens and B. Ahren. "Involvement of Capsaicin-Sensitive Nerves in Regulation of Insulin Secretion and Glucose Tolerance in Conscious Mice." Am J Physiol 267, no. 4 Pt 2 (1994): R1071-7.
  • Kreutter, D. K., S. J. Orena, A. J. Torchia, L. G. Contillo, G. C. Andrews and R. W. Stevenson. "Amylin and Cgrp Induce Insulin Resistance Via a Receptor Distinct from Camp-Coupled Cgrp Receptor." Am J Physiol 264, no. 4 Pt 1 (1993): E606-13.
  • Noble, M. D., J. Romac, Y. Wang, J. Hsu, J. E. Humphrey and R. A. Liddle. "Local Disruption of the Celiac Ganglion Inhibits Substance P Release and Ameliorates Caerulein-Induced Pancreatitis in Rats." Am J PhysiolGastrointest Liver Physiol 291, no. 1 (2006): G128-34.
  • Pettersson, M. and B. Ahren. "Insulin and Glucagon Secretion in Rats: Effects of Calcitonin Gene-Related Peptide." RegulPept 23, no. 1 (1988): 37-50.
  • Pettersson, M. and B. Ahren. "Calcitonin Gene-Related Peptide Inhibits Insulin Secretion Studies on Ion Fluxes and Cyclic Amp in Isolated Rat Islets." Diabetes Res 15, no. 1 (1990): 9-14.
  • Pettersson, M., B. Ahren, G. Bottcher and F. Sundler. "Calcitonin Gene-Related Peptide: Occurrence in Pancreatic Islets in the Mouse and the Rat and Inhibition of Insulin Secretion in the Mouse." Endocrinology 119, no. 2 (1986): 865-9.
  • Pettersson, M., I. Lundquist and B. Ahren. "Neuropeptide Y and Calcitonin Gene-Related Peptide: Effects on Glucagon and Insulin Secretion in the Mouse." Endocr Res 13, no. 4 (1987): 407-17.
  • Sangiao-Alvarellos, S. and F. Cordido. "Effect of Ghrelin on Glucose-Insulin Homeostasis: Therapeutic Implications." Int J Pept 2010, (2010).
  • Suri, A. and A. Szallasi. "The Emerging Role of Trpv1 in Diabetes and Obesity." Trends PharmacolSci 29, no. 1 (2008): 29-36.
  • Thorens, B. "Brain Glucose Sensing and Neural Regulation of Insulin and Glucagon Secretion." Diabetes ObesMetab 13 Suppl 1, (2011): 82-8.
  • Thorens, B. "Sensing of Glucose in the Brain." HandbExpPharmacol, no. 209 (2012): 277-94.
  • Tsui, H., G. Paltser, Y. Chan, R. Dorfman and H. M. Dosch. "'Sensing' the Link between Type 1 and Type 2 Diabetes." Diabetes Metab Res Rev 27, no. 8 (2011): 913-8.
  • Van Buren, J. J., S. Bhat, R. Rotello, M. E. Pauza and L. S. Premkumar. "Sensitization and Translocation of Trpv1 by Insulin and Igf-I." Mol Pain 1, (2005): 17.
  • Weller, K., P. W. Reeh and S. K. Sauer. "Trpv1, Trpa1, and Cb1 in the Isolated Vagus Nerve--Axonal Chemosensitivity and Control of Neuropeptide Release." Neuropeptides 45, no. 6 (2011): 391-400.
  • Winter, Z., A. Buhala, F. Otvos, K. Josvay, C. Vizler, G. Dombi, G. Szakonyi and Z. Olah. "Functionally Important Amino Acid Residues in the Transient Receptor Potential Vanilloid 1 (Trpv1) Ion Channel - an Overview of the Current Mutational Data." Mol Pain 9, no. 1 (2013): 30.
  • Zhang, Z., C. S. Winborn, B. Marquez de Prado and A. F. Russo. "Sensitization of Calcitonin Gene-Related Peptide Receptors by Receptor Activity-Modifying Protein-1 in the Trigeminal Ganglion." J Neurosci 27, no. 10 (2007): 2693-703.
  • Zsombok, A. "Vanilloid Receptors--Do They Have a Role in Whole Body Metabolism? Evidence from Trpv1." J Diabetes Complications 27, no. 3 (2013): 287-92.
  • Zsombok, A., H. Gao, K. Miyata, A. Issa and A. V. Derbenev. "Immunohistochemical Localization of Transient Receptor Potential Vanilloid Type 1 and Insulin Receptor Substrate 2 and Their Co-Localization with Liver-Related Neurons in the Hypothalamus and Brainstem." Brain Res 1398, (2011): 30-9.