sn 1006 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
SN 1006 PowerPoint Presentation
Download Presentation
SN 1006

Loading in 2 Seconds...

play fullscreen
1 / 52

SN 1006 - PowerPoint PPT Presentation


  • 139 Views
  • Uploaded on

SN 1006. 25 ème Journée Thématique de l’IPN, 3 Juin 2008, Orsay. Frontiers of Low-Energy Neutrino Astronomy: Earth, Sun and Supernovae. Georg Raffelt, Max-Planck-Institut für Physik, München. Where do Neutrinos Appear in Nature?. Nuclear Reactors. . Sun. . Supernovae

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'SN 1006' - phyre


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
sn 1006
SN 1006

25ème Journée Thématique de l’IPN, 3 Juin 2008, Orsay

Frontiers of

Low-Energy Neutrino Astronomy:

Earth, Sun and Supernovae

Georg Raffelt, Max-Planck-Institut für Physik, München

where do neutrinos appear in nature
Where do Neutrinos Appear in Nature?

Nuclear Reactors

Sun

Supernovae

(Stellar Collapse)

Particle Accelerators

SN 1987A

Earth Atmosphere

(Cosmic Rays)

Astrophysical

Accelerators Soon ?

Earth Crust

(Natural

Radioactivity)

Cosmic Big Bang

(Today 330 n/cm3)

Indirect Evidence

where do neutrinos appear in nature1
Where do Neutrinos Appear in Nature?

Neutrinos from nuclear

reactions:

Energies 1-20 MeV

Quasi thermal sources

Supernova: T ~ few MeV

Big-Bang Neutrinos:

Very small energies today

(cosmic red shift)

Like matter today

  • “Beam dump neutrinos”
  • High-energy protons hit
  • matter or photons
  • Produce secondary p
  • Neutrinos from pion
  • decay
  • p  m + nm
  • me + nm+ne
  • Energies ≫ GeV
where do neutrinos appear in nature2
Where do Neutrinos Appear in Nature?

Low-energy

neutrino astronomy

(including geo-neutrinos)

Energies ~ 1-50 MeV

  • Long-baseline
  • neutrino oscillation
  • experiments with
  • Reactor neutrinos
  • Neutrino beams from
  • accelerators

High-energy

neutrino astronomy

Closely related to

cosmic-ray physics

neutrinos from the sun
Neutrinos from the Sun

Hans Bethe (1906-2005, Nobel prize 1967)

Thermonuclear reaction chains (1938)

Helium

Reaction-

chains

Energy

26.7 MeV

Solar radiation: 98 % light

2 % neutrinos

At Earth 66 billion neutrinos/cm2 sec

bethe s classic paper on nuclear reactions in stars
Bethe’s Classic Paper on Nuclear Reactions in Stars

No neutrinos

from nuclear reactions

in 1938 …

sun glasses for neutrinos
Sun Glasses for Neutrinos?

8.3 light minutes

Several light years of lead

needed to shield solar

neutrinos

Bethe & Peierls 1934:

“… this evidently means

that one will never be able

to observe a neutrino.”

first detection 1954 1956
First Detection (1954 -1956)

Anti-Electron

Neutrinos

from

Hanford

Nuclear Reactor

3 Gammas

in coincidence

n

Cd

p

e+

e-

g

g

g

Clyde Cowan

(1919 – 1974)

Fred Reines

(1918 – 1998)

Nobel prize 1995

Detector prototype

first measurement of solar neutrinos
First Measurement of Solar Neutrinos

Inverse beta decay

of chlorine

600 tons of

Perchloroethylene

Homestake solar neutrino

observatory (1967-2002)

cherenkov effect
Cherenkov Effect

Light

Electron or Muon

(Charged Particle)

Neutrino

Light

Cherenkov Ring

Georg Raffelt, Max-Planck-Institut für Physik, München

25ème Journée Thématique de l’IPN, 3 Juin 2008, Orsay

Elastic scattering or CC reaction

Water

super kamiokande sun in the light of neutrinos
Super-Kamiokande: Sun in the Light of Neutrinos

Georg Raffelt, Max-Planck-Institut für Physik, München

25ème Journée Thématique de l’IPN, 3 Juin 2008, Orsay

2002 physics nobel prize for neutrino astronomy
2002 Physics Nobel Prize for Neutrino Astronomy

Ray Davis Jr.

(1914 - 2006)

Masatoshi Koshiba

(*1926)

“for pioneering contributions to astrophysics, in

particular for the detection of cosmic neutrinos”

missing neutrinos from the sun
Missing Neutrinos from the Sun

Homestake

Chlorine

8B

Calculation of expected

experimental counting

rate from various

source reactions

CNO

7Be

Measurement (1970–1995)

John Bahcall

1934 - 2005

Raymond Davis Jr.

1914 - 2006

neutrino flavor oscillations
Neutrino Flavor Oscillations

Two-flavor mixing

Each mass eigenstate propagates as

with

Phase difference implies flavor oscillations

Probabilitynenm

sin2(2q)

Bruno Pontecorvo

(1913 – 1993)

Invented nu oscillations

z

Oscillation

Length

missing neutrinos from the sun1
Missing Neutrinos from the Sun

Electron-Neutrino Detectors

All Flavors

Water

Water

Heavy Water

Heavy Water

Chlorine

Gallium

ne+e- ne+e-

n+ e- n+ e-

ne+dp+p+e-

n+dp+n+n

8B

8B

8B

8B

8B

8B

CNO

7Be

pp

CNO

7Be

Homestake

Gallex/GNO

SAGE

(Super-)

Kamiokande

SNO

SNO

three flavor neutrino parameters
Three-Flavor Neutrino Parameters

Atmospheric/K2K

CHOOZ

Solar/KamLAND

2s ranges

hep-ph/0405172

Solar

75-92

Atmospheric

1400-3000

d CP-violating phase

Normal

Inverted

2

3

e

e

m

m

t

t

Sun

Atmosphere

1

e

e

m

m

t

t

m

m

t

t

Atmosphere

2

Sun

1

3

  • Tasks and Open Questions
  • Precision for q12 andq23
  • How large is q13?
  • CP-violating phase d?
  • Mass ordering?
  • (normal vs inverted)
  • Absolute masses?
  • (hierarchical vs degenerate)
  • Dirac or Majorana?
solar neutrino spectrum
Solar Neutrino Spectrum

7-Be line measured

by Borexino (2007)

solar neutrino spectroscopy with borexino
Solar Neutrino Spectroscopy with BOREXINO
  • Neutrino electron scattering
  • Liquid scintillator technology
  • (~ 300 tons)
  • Low energy threshold
  • (~ 60 keV)
  • Online since 16 May 2007
  • Expected without flavor oscillations

75 ± 4 counts/100t/d

  • Expected with oscillations

49 ± 4 counts/100t/d

  • BOREXINO result (May 2008)

49 ± 3stat ± 4syscnts/100t/d

arXiv:0805.3843 (25 May 2008)

Georg Raffelt, Max-Planck-Institut für Physik, München

25ème Journée Thématique de l’IPN, 3 Juin 2008, Orsay

next steps in borexino
Next Steps in Borexino
  • Collect more statistics of Beryllium line
  • Seasonal variation of rate
  • (Earth orbit eccentricity)
  • Measure neutrinos from the CNO reaction chain
  • Information about solar metal abundance

Measure geo-neutrinos

(from natural radioactivity in the Earth crust)

Approx. 7-17 events/year

Main background: Reactors ~ 20 events/year

geo neutrinos why and what
Geo Neutrinos: Why and What?
  • We know surprisingly little about
  • the interior of the Earth:
  • Deepest bore hole ~ 12 km
  • Samples from the crust are
  • available for chemical analysis
  • (e.g. vulcanoes)
  • Seismology reconstructs density
  • profile throughout the Earth
  • Heat flow from measured
  • temperature gradients 30-44 TW
  • (BSE canonical model, based on
  • cosmochemical arguments,
  • predicts ~ 19 TW from crust and
  • mantle, none from core)
  • Neutrinos escape freely
  • Carry information about chemical composition, radioactive heat production,
  • or even a putative natural reactor at the core
expected geo neutrino fluxes
Expected Geo Neutrino Fluxes

S. Dye, Talk 5/25/2006

Baltimore

geo neutrinos
Geo Neutrinos

Predicted geo neutrino flux

KamLAND scintillator detector (1 kton)

Reactor background

kamland observation of geoneutrinos
Kamland Observation of Geoneutrinos
  • First tentative observation of geoneutrinos
  • at Kamland in 2005 (~ 2 sigma effect)
  • Very difficult because of large background
  • of reactor neutrinos
  • (is main purpose for neutrino oscillations)
slide25

Sanduleak -69 202

Supernova 1987A23 February 1987

Tarantula Nebula

Large Magellanic Cloud

Distance 50 kpc

(160.000 light years)

Georg Raffelt, Max-Planck-Institut für Physik, München

25ème Journée Thématique de l’IPN, 3 Juin 2008, Orsay

supernova neutrinos 20 jahre nach sn 1987a
Supernova Neutrinos 20 Jahre nach SN 1987A

Georg Raffelt, Max-Planck-Institut für Physik, München

25ème Journée Thématique de l’IPN, 3 Juin 2008, Orsay

stellar collapse and supernova explosion
Stellar Collapse and Supernova Explosion

Main-sequence star

Onion structure

Helium-burning star

Collapse (implosion)

Hydrogen Burning

Helium

Burning

Hydrogen

Burning

Degenerate iron core:

r 109 g cm-3

T  1010 K

MFe 1.5 Msun

RFe 8000 km

stellar collapse and supernova explosion1
Stellar Collapse and Supernova Explosion

Newborn Neutron Star

Collapse (implosion)

Explosion

~ 50 km

Neutrino

Cooling

Proto-Neutron Star

r  rnuc= 31014 g cm-3

T  30 MeV

stellar collapse and supernova explosion2
Stellar Collapse and Supernova Explosion

Newborn Neutron Star

~ 50 km

Gravitational binding energy

Eb 3  1053 erg  17% MSUN c2

This shows up as

99% Neutrinos

1% Kinetic energy of explosion

(1% of this into cosmic rays)

0.01% Photons, outshine host galaxy

Neutrino

Cooling

Neutrino luminosity

Ln 3  1053 erg / 3 sec

 3  1019LSUN

While it lasts, outshines the entire

visible universe

Proto-Neutron Star

r  rnuc= 31014 g cm-3

T  30 MeV

neutrino signal of supernova 1987a
Neutrino Signal of Supernova 1987A

Kamiokande-II (Japan)

Water Cherenkov detector

2140 tons

Clock uncertainty 1 min

Irvine-Michigan-Brookhaven (US)

Water Cherenkov detector

6800 tons

Clock uncertainty 50 ms

Baksan Scintillator Telescope

(Soviet Union), 200 tons

Random event cluster ~ 0.7/day

Clock uncertainty +2/-54 s

Within clock uncertainties,

signals are contemporaneous

the energy loss argument
The Energy-Loss Argument

SN 1987A neutrino signal

Volume emission

of novel particles

Emission of very weakly interacting

particles would “steal” energy from the

neutrino burst and shorten it.

(Early neutrino burst powered by accretion,

not sensitive to volume energy loss.)

Neutrino

diffusion

Late-time signal most sensitive observable

Neutrino

sphere

do neutrinos gravitate
Do Neutrinos Gravitate?

Neutrinos arrive a few hours earlier than photons  Early warning (SNEWS)

SN 1987A: Transit time for photons and neutrinos equal to within ~ 3h

Shapiro time delay for particles moving in a

gravitational potential

Longo, PRL 60:173,1988

Krauss & Tremaine, PRL 60:176,1988

Equal within ~ 1 - 4 10-3

  • Proves directly that neutrinos respond to gravity in the usual way
  • because for photons gravitational lensing already proves this point
  • Cosmological limits DNn≲ 1 much worse test of neutrino gravitation
  • Provides limits on parameters of certain non-GR theories of gravitation
neutrino driven delayed explosion
Neutrino-Driven Delayed Explosion

Neutrino heating

increases pressure

behind shock front

Picture adapted from Janka, astro-ph/0008432

standing accretion shock instability sasi
Standing Accretion Shock Instability (SASI)

Georg Raffelt, Max-Planck-Institut für Physik, München

25ème Journée Thématique de l’IPN, 3 Juin 2008, Orsay

Mezzacappa et al., http://www.phy.ornl.gov/tsi/pages/simulations.html

large detectors for supernova neutrinos
Large Detectors for Supernova Neutrinos

LVD (400)

Borexino (100)

Baksan

(100)

Super-Kamiokande (104)

KamLAND (400)

MiniBooNE

(200)

In brackets events

for a “fiducial SN”

at distance 10 kpc

IceCube (106)

simulated supernova signal at super kamiokande
Simulated Supernova Signal at Super-Kamiokande

Accretion

Phase

Kelvin-Helmholtz

Cooling Phase

Simulation for Super-Kamiokande SN signal at 10 kpc,

based on a numerical Livermore model

[Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216]

icecube neutrino telescope at the south pole
IceCube Neutrino Telescope at the South Pole
  • 1 km3 antarctic ice, instrumented
  • with 4800 photomultipliers
  • 40 of 80 strings installed (2008)
  • Completion until 2011 foreseen
icecube as a supernova neutrino detector
IceCube as a Supernova Neutrino Detector

Each optical module (OM) picks up

Cherenkov light from its neighborhood.

SN appears as “correlated noise”.

  • About 300
  • Cherenkov
  • photons
  • per OM
  • from a SN
  • at 10 kpc
  • Noise
  • per OM
  • < 260 Hz
  • Total of
  • 4800 OMs
  • in IceCube

IceCube SN signal at 10 kpc, based

on a numerical Livermore model

[Dighe, Keil & Raffelt, hep-ph/0303210]

  • Method first discussed by
  • Pryor, Roos & Webster,
  • ApJ 329:355 (1988)
  • Halzen, Jacobsen & Zas
  • astro-ph/9512080
neutrino oscillations in matter
Neutrino Oscillations in Matter

Neutrinos in a medium suffer flavor-dependent

refraction (PRD 17:2369, 1978)

f

W, Z

Z

f

n

n

n

n

Lincoln Wolfenstein

  • “Level crossing” possible in a medium with a gradient (MSW effect)
  • - For solar nus large flavor conversion anyway due to large mixing
  • - Still important for 13-oscillations in supernova envelope
  • Breaks degeneracy between Q and p/2 -Q(dark vs light side)
  • - 12 mass ordering for solar nus established
  • - 13 mass ordering (normal vs inverted) at future LBL or SN
  • Discriminates against sterile nus in atmospheric oscillations
  • CP asymmetry in LBL, to be distinguished from intrinsic CP violation
  • Prevents flavor conversion in a SN core and within shock wave
  • Strongly affects sterile nu production in SN or early universe
h and l resonance for msw oscillations
H- and L-Resonance for MSW Oscillations

R. Tomàs, M. Kachelriess,

G. Raffelt, A. Dighe,

H.-T. Janka & L. Scheck: Neutrino signatures of

supernova forward and

reverse shock propagation[astro-ph/0407132]

Resonance

density for

Resonance

density for

shock wave propagation in icecube
Shock-Wave Propagation in IceCube

Inverted Hierarchy

No shockwave

Inverted Hierarchy

Forward & reverse shock

Inverted Hierarchy

Forward shock

Normal Hierarchy

Choubey, Harries & Ross, “Probing neutrino oscillations from supernovae shock

waves via the IceCube detector”, astro-ph/0604300

collective effects in neutrino flavor oscillations
Collective Effects in Neutrino Flavor Oscillations
  • Collapsed supernova core or accretion torus of
  • merging neutron stars:
  • Neutrino flux very dense: Up to 1035 cm-3
  • Neutrino-neutrino interaction energy
  • much larger than vacuum oscillation frequency
  • Large “matter effect” of neutrinos on each
  • other
  • Non-linear oscillation effects
  • Assume 80% anti-neutrinos
  • Vacuum oscillation frequency
  • w = 0.3 km-1
  • Neutrino-neutrino interaction
  • energy at nu sphere (r = 10 km)
  • m = 0.3105 km-1
  • Falls off approximately as r-4
  • (geometric flux dilution and nus
  • become more co-linear)
spectral split stepwise spectral swapping
Spectral Split (Stepwise Spectral Swapping)

Initial fluxes

at nu sphere

After

collective

trans-

formation

For explanation see

Raffelt & Smirnov

arXiv:0705.1830

arXiv:0709.4641

Duan, Fuller,

Carlson & Qian

arXiv:0706.4293

arXiv:0707.0290

Fogli, Lisi, Marrone & Mirizzi, arXiv:0707.1998

mass hierarchy at extremely small theta 13
Mass Hierarchy at Extremely Small Theta-13

Using Earth matter effects to diagnose transformations

Ratio of spectra in

two water Cherenkov

detectors (0.4 Mton),

one shadowed by the

Earth, the other not

Dasgupta, Dighe & Mirizzi, arXiv:0802.1481

collective sn neutrino oscillations 2006 2008 i
Collective SN neutrino oscillations 2006-2008 (I)

“Bipolar” collective transformations

important, even for dense matter

  • Duan, Fuller & Qian
  • astro-ph/0511275
  • Numerical simulations
  • Including multi-angle effects
  • Discovery of “spectral splits”
  • Duan, Fuller, Carlson & Qian
  • astro-ph/0606616, 0608050
  • Pendulum in flavor space
  • Collective pair annihilation
  • Pure precession mode
  • Hannestad, Raffelt, Sigl & Wong
  • astro-ph/0608695
  • Duan, Fuller, Carlson & Qian
  • astro-ph/0703776

Self-maintained coherence

vs. self-induced decoherence

caused by multi-angle effects

  • Sawyer, hep-ph/0408265, 0503013
  • Raffelt & Sigl, hep-ph/0701182
  • Esteban-Pretel, Pastor, Tomàs,
  • Raffelt & Sigl, arXiv:0706.2498

Theory of “spectral splits”

in terms of adiabatic evolution in

rotating frame

  • Raffelt & Smirnov,
  • arXiv:0705.1830, 0709.4641
  • Duan, Fuller, Carlson & Qian
  • arXiv:0706.4293, 0707.0290

Independent numerical simulations

  • Fogli, Lisi, Marrone & Mirizzi
  • arXiv:0707.1998
collective sn neutrino oscillations 2006 2008 ii
Collective SN neutrino oscillations 2006-2008 (II)

Three-flavor effects in O-Ne-Mg SNe

on neutronization burst

(MSW-prepared spectral double split)

  • Duan, Fuller, Carlson & Qian,
  • arXiv:0710.1271
  • Dasgupta, Dighe, Mirrizzi & Raffelt,
  • arXiv:0801.1660

Theory of three-flavor collective

oscillations

  • Dasgupta & Dighe,
  • arXiv:0712.3798

Second-order mu-tau refractive effect

important in three-flavor context

  • Esteban-Pretel, Pastor, Tomàs,
  • Raffelt & Sigl, arXiv:0712.1137

Identifying the neutrino mass hierarchy

at extremely small Theta-13

  • Dasgupta, Dighe & Mirizzi,
  • arXiv:0802.1481

Formulation for non-spherical

geometry

  • Dasgupta, Dighe, Mirizzi & Raffelt
  • arXiv:0805.3300

Many theoretical questions for this neutrino many-body system

remain unresolved!

core collapse sn rate in the milky way
Core-Collapse SN Rate in the Milky Way

Core-collapse SNe per century

7

8

0

1

2

3

4

5

6

9

10

SN statistics in

external galaxies

van den Bergh & McClure (1994)

Cappellaro & Turatto (2000)

Gamma rays from

26Al (Milky Way)

Diehl et al. (2006)

Historical galactic

SNe (all types)

Strom (1994)

Tammann et al. (1994)

No galactic

neutrino burst

90 % CL (25 y obserservation)

Alekseev et al. (1993)

References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro-ph/0012455. Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekeseev et al., JETP 77 (1993) 339 and my update.

s uper n ova e arly w arning s ystem snews
SuperNova Early Warning System (SNEWS)

Neutrino observation can alert astronomers

several hours in advance to a supernova.

To avoid false alarms, require alarm from at

least two experiments.

Super-K

IceCube

Coincidence

Server

@ BNL

Alert

LVD

Supernova 1987A

Early Light Curve

Others ?

http://snews.bnl.gov

astro-ph/0406214

experimental limits on relic supernova neutrinos
Experimental Limits on Relic Supernova Neutrinos

Super-K upper limit

29 cm-2 s-1 for

Kaplinghat et al. spectrum

[hep-ex/0209028]

Upper-limit flux of

Kaplinghat et al.,

astro-ph/9912391

Integrated 54 cm-2 s-1

Cline, astro-ph/0103138

dsnb measurement with neutron tagging
DSNB Measurement with Neutron Tagging

Beacom & Vagins, hep-ph/0309300

[Phys. Rev. Lett., 93:171101, 2004]

Future large-scale scintillator

detectors (e.g. LENA with 50 kt)

  • Inverse beta decay reaction tagged
  • Location with smaller reactor flux
  • (e.g. Pyhäsalmi in Finland) could
  • allow for lower threshold

Pushing the boundaries of neutrino

astronomy to cosmological distances

laguna funded fp7 design study
LAGUNA - Funded FP7 Design Study

Large Apparati for Grand Unification and Neutrino Astrophysics

(see also arXiv:0705.0116)

the red supergiant betelgeuse alpha orionis
The Red Supergiant Betelgeuse (Alpha Orionis)

First resolved

image of a star

other than Sun

Distance

(Hipparcos)

130 pc (425 lyr)

  • If Betelgeuse goes Supernova:
  • 6107 neutrino events in Super-Kamiokande
  • 2.4103 neutron events per day from Silicon-burning phase
  • (few days warning!), need neutron tagging
  • [Odrzywolek, Misiaszek & Kutschera, astro-ph/0311012]