slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
손보사 CRM 추진 사례 PowerPoint Presentation
Download Presentation
손보사 CRM 추진 사례

Loading in 2 Seconds...

play fullscreen
1 / 43

손보사 CRM 추진 사례 - PowerPoint PPT Presentation


  • 253 Views
  • Uploaded on

손보사 CRM 추진 사례. 2001. 3. 22. 조 영 빈 Billycho@unitel.co.kr. 목 차. 1. 추진 배경 1.1. K 사의 전략적 이슈 1.2. 비전 및 추진 전략 2. 추진 과정 3. 시스템 구축 및 활용 3.1. 프로젝트 개요 3.2. 시스템 구성도 3.3. DW/DM 3.4. OLAP 3.5. Data Mining 3.6. Campaign management 3.7. 통합과 연계 4. 시사점. 1. 추진 배경.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about '손보사 CRM 추진 사례' - penda


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

손보사 CRM 추진 사례

2001. 3. 22.

조 영 빈

Billycho@unitel.co.kr

slide2

목 차

1. 추진 배경

1.1. K사의 전략적 이슈

1.2. 비전 및 추진 전략

2. 추진 과정

3. 시스템 구축 및 활용

3.1. 프로젝트 개요

3.2. 시스템 구성도

3.3. DW/DM

3.4. OLAP

3.5. Data Mining

3.6. Campaign management

3.7. 통합과 연계

4. 시사점

slide3

1. 추진 배경

1. 1. K 사의 전략적 이슈

보험 시장 환경 변화에 어떻게 대응할 것인가?

중소형사 그룹의 입지 약화 및 전문 보험사 그룹의 증가가 예상됨

IMF 이전

현 재

향후(2002년)

대형 보험사

대형 보험사

대형 보험사

중소형 보험사

중소형 보험사

외국계 보험사

전문 보험사

외국계 보험사

외국계 보험사

slide4

1. 추진 배경

1. 1. K사의 전략적 이슈

소형사로서의 강점과 대형사의 약점을 고려한 보다 현실적인 마케팅 전략 방향 설정 필요

  • 대형사 대비 소형사로서의 강점 적극 활용
  • 대형사가 대응하기 어려운 전략을 조기 시행
  • 시장 선점 및 차별화 요소로 적극 활용 가능

기본 방향

  • 외국 Niche Player Best Practice가 국내 시장 환경에서 적용 가능성 검토
  • - 특정 고객층만 대상의 전문보험사(USAA, Progressive)
  • 외국 Direct Channel Best Practice 국내 적용 시 문화적 Gap 극복방안 검토
  • - 특정 채널만의 전문 보험사(Direct Line)

고려 사항

검토 결과

  • 기존 고객, 기존 조직 및 기존 상품을 보유한 상황에서는 Niche Player는 부정적
  • 기존 조직과 Direct Channel의 효율적인 연계를 통한 중소형사로서의 차별화가 바람직

생존 전략

  • 국내 환경을 고려한 Direct Channel 구축
  • 수익성과 성장성 측면에서 대외 경쟁력 확보
  • 차별적 이미지 선점(positioning) 및 이를 통한 제휴 마케팅의 활성화
  • 수당 수수료 체계 다원화를 통한 기존 조직의 점진적인 고능률화 및 생산성 향상
  • Direct Channel 단계적 도입(Tele Marketing, Call Center, Cyber Insurance)
  • 기존고객 Value 증대를 위한 최신 정보기술(IT)의 도입 및 활용

해결 과제

slide5

1. 추진 배경

1. 2. 비전 및 전략

IDMS 2000을기반으로 한 최고의 Direct Channel 전문 보험사

- Direct Communication 및 Cyber Image 기업으로 고객에게 Positioning -

1단계(2000년 3월까지) 2단계(2002년 3월까지) 3단계(2003년 3월까지)

저비용/고효율

/차별화 완성

Direct Channel

전문 보험사로 발전

금융 Portal

제휴 서비스 구축

상생 전략

FIS를 통한

차별적 이미지

수익성

Direct Channel

Infra 구축

새로운

비전의 수립

차별화

Direct Channel이란 Sales(신규고객 유치) 측면 뿐만 아니라

고객과의 Direct Communication & Relation (이탈방지, 연계판매[Cross sell], 추가판매

[Up sell] 및 서비스 등)을 통하여 기존채널의 고객 유지 관리를 강화하는 개념임

주) IDMS 2000 : 고객정보를 기반으로 하는 [Information-based] Direct Marketing System 으로

K사의 기반 시스템명

slide6

1. 추진 배경

1. 2. 비전 및 전략

IDMS 2000을 기반으로 한 CRM Process의 효율적 운영

Direct Channel

Infra 구축

고객 통합 DB 구축

채널 운영

고객 가치 증대

(CRM)

FIS

(Free Internet Service)

보유 고객 유지

(갱신율 제고)

기존 채널

(설계사, 대리점)

보유 고객 정보

E-Business 제휴

연계 가입 증대

금융 Portal 서비스

체제 구축

Customer

Database

(DW)

신 채널

(Direct Channel)

e - Insurance

Call Center

추가 판매 제고

신규 고객 유치

신규 고객 정보

상생 체제 구축

(Win-Win 체제)

채널/고객 특성별

상품 개발

판매채널(Sales)

+

기존채널 보완

slide7

2. 추진 과정

기술 검토

업체 선정

프로젝트

진행

Test

Marketing

피드백

전략 수립

’99. 2. ~ ’99.3

’99. 9. ~ ’00.1

‘00.2 ~ ’00.7.

’00.7. ~’00.9

’00. 7. ~

’99. 4. ~ ’99.8

’00.9 ~ ’01.2.

’01.1 ~ ’01.3

  • TFT 구성 (’99.4)

: 3 명

  • 마케팅 전략 수립

- 비전 및 중장기

전략 수립

- CRM System

- Direct Channel

- CRM Process

  • 고객 분석

- 이탈/연계고객

특성 분석

- 고객 세분화

  • 요소 기술 검토
  • 업체 선정

- 컨소시엄 구성

  • 내부 팀 구성

- 마케팅실 주관

- 정보시스템부/

현업 참여

  • 1차 프로젝트

- Pilot Project

- Direct Channel

. Call Center

. e-Insurance

  • 2차 프로젝트

- CRM 시스템

완성

- 각 시스템 연계

  • 1차 테스트

- Pilot Project

기술 검증

- Call Center

Flow 검증

- 마케팅사이클

자동화 테스트

  • 2 차 테스트

- Cyber Channel

Flow 검증

- 전프로세스 검증

  • 테스트 마케팅

결과 검토

- 기술 보완

- 마케팅 시나리오

- 데이터 보완

- 업무 프로세스

개선 등

slide8

3. 시스템 구축 및 활용

3. 1. 프로젝트 개요

프로젝트

목 적

  • 시장환경변화와 마케팅 패러다임 변화에 적극적으로 대응키 위하여
  • 데이터 웨어하우스, 데이터 마이닝, OLAP 등 최신 정보기술 (IT) 을 활용하여
  • 가치 있는 신규고객의 창출, 기존고객의 가치증대, 판매채널의 생산성 향상을 위한

마케팅 시스템 프로세스를 구축하며

  • 향후 One to One 마케팅 및 CRM (Customer Relationship Marketing) 체제로

이행키 위한 기반 시스템으로 활용코자 함

기본 전략

  • 단계적 도입을 통한 효과 극대화 및 위험 최소화
  • 테스트 마케팅 시행
  • Call Center 및 e-Insurance와 통합 구축
  • 기존 보유 자원의 최대 활용 및 기간 시스템과 연동

Mass Marketing

One-to-One Marketing

(Customer Relationship Management)

시장점유율에 초점

고객 점유율에 초점

신규 고객 획득 중심

고객의 평생가치 증대 중심

인적 판매채널 의존(설계사,대리점)

판매채널의 다양화(TM,DM,IM)

감에 의한 마케팅

IT가 기반이 된 과학적인 마케팅

Legacy System (Main System) 중심

마케팅 의사결정 지원시스템 중심(DW등)

slide9

3. 시스템 구축 및 활용

3. 1. 프로젝트 개요

진행 일정

  • CRM SYSTEM : 1 (4개월), 2차 (4개월) 로 분리 진행
  • e-Insurance 및 Call Center : 1차에 진행 (5개월)

2000. 1 2 3 4 5 6 7 8 9 10 11

1차

2차

TEST

1 차

- CRM 시스템 : Direct Channel Marketing (Call Center, e-Insurance) 을 위한 재사용 가능하고

미래 지향적인 DW 구축 및 Call Center Test Marketing - 신규 고객에 초점

- Call Center : 기간계 시스템과 DW와 연계

- e_Insurance : 기간계 시스템, DW 및 FIS 연계

2 차

- CRM 시스템 완성 : Direct Channel 및 기존 시스템과의 연동을 통한 신규고객 창출 및

기존고객의 이탈방지, 추가가입을 유도하는 CRM 시스템 완성

- Call Center, e-Insurance, DW, 기간계와의 자동화된 연동

slide10

3. 시스템 구축 및 활용

3. 2. 시스템 구성도

캠페인정보

고객리스트

SAS/E-Miner

보험 설계사

기종:

OS: UNIX

DBMS: SAS

운영계

고객 Data Warehouse

마이닝전략 Key

E- Insurance

내 부

데이터

스코어/모델

OPERA@web

캠페인 전략

(시나리오)

기종:

OS: NT

DBMS:Oracle

외 부

데이터

캠페인

결과

기종:

OS:UNIX

DBMS:DB2

기종:

OS: UNIX

DBMS: SAS

Call Center

캠페인

전략수립

기종:

OS: NT

DBMS:Oracle

캠페인 결과/반응정보

OLAP

마케팅 정보

사용자 층

기종:

OS:

DBMS:Oracle

slide11

3. 시스템 구축 및 활용

3. 3. DW/DM

DW 업무 범위

고객과의 접촉에

관한 정보

대출에 관한 정보

상품/계약 정보

대출

신마케팅 정보

  • 대출자 정보
  • 대출기본 정보
  • 대출상품 정보
  • 대출담보 정보
  • 신용 정보
  • 영업설문서 정보
  • 고객접촉 정보

- DM발송반송

- 의사소통 정보

- 이벤트결과

  • 캠페인활동 정보

- 고객반응 정보

  • 상품정보
  • 계약공통

- 고객별계약정보

  • 자동차 계약
  • 장기 계약
  • 화재특종 계약

상품과 계약에 관한 정보

사고 발생 및

처리에 관한 정보

고객에 관한 정보

모집조직에 관한 정보

내부조직 정보

보상 정보

고객 정보

  • 기본정보
  • 조직평가정보

- 점포평가

- 교육과정출근관리

- 표준활동판정 정보

  • 영업실적정보- 자동차손해/갱신/

자동이체율

- 보험료실적

  • 개인고객정보

- 고객 기본 정보

- 가족관계정보- 마이닝 평가정보- 직업 정보- 보험가입이력 정보- 재무 정보- 설계사시험 정보

- 선호도 정보

  • 법인고객 정보

- 고객기본정보

- 법인재무정보

- 임직원정보- 타법인출자 정보

  • 보상공통 정보

- 고객별사고정보

  • 자동차 보상 정보

- 사고발생처리정보

- 소송발생처리정보

- 구상발생처리정보

  • 장기 보상 정보
  • 화특 보상 정보
slide12

3. 시스템 구축 및 활용

3. 3. DW/DM

DM 업무 범위

장기보험 계약 추이 분석

자동차보험계약성향

장기보험계약성향

  • 상품/보종별 판매 현황
  • 피보험자별 판매 현황
  • 담보/특약별 판매 현황
  • 차종/배기량별 판매 현황
  • 표준할인 할증별 판매현황
  • 유입경로별 판매 현황

자동차보험 계약 추이 분석

  • 상품/보종별 판매 현황
  • 납기/만기별 판매 현황
  • 계약자/피보험자별 현황
  • 가입담보/금액별 판매현황
  • 실효/해지/부활 계약 현황

고객 통합 분석

캠페인 내역 분석

판매채널성향분석

영업채널성향

캠페인활동

고객성향

  • 성별/연령별 현황
  • 학력/지역별 현황
  • 근무기간별 현황
  • 자격등급별 현황
  • 근무기간별 실적/소득 현황
  • 정착수당 지급현황
  • 영업활동 추이분석
  • 고객 성별/연령별 응답 분석
  • 고객 마이닝 평가점수별 응답분석
  • 캠페인 성과분석
  • 고객 상태별 성별/지역별 고객 현황
  • 마이닝 점수별 고객현황
  • 고객 개인별 보험가입이력 현황
slide13

3. 시스템 구축 및 활용

3. 3. DW/DM

DW 모델링 진행 절차

1. 모델에 대한 설명

1. LDM 리뷰

2. 이슈정의

2. PDM 확정

  • 논리모델->물리모델 변환

3. 논리모델 확정

  • 1차 모델의 리뷰
  • 이슈 재정리

1. PDM 설명

DW팀, 정보시스템부

참여

DW팀, 정보시스템부,

현업담당자 참여

2. 매핑초안 정의

DW팀, 정보시스템부,

ETT담당자 참여

  • ETT를 위한 기본정보 제공
  • Source vs.Target 정의
slide14

3. 시스템 구축 및 활용

3. 3. DW/DM

DW 모델링 진행 절차 : 신규 주제 영역

1. 사용자요구사항정의

1. LDM 리뷰

2. 논리모델 확정

2. PDM 확정

  • 신규 요구사항 정의
  • LDM 확정
  • 논리모델->물리모델 변환

1. PDM 설명

DW팀, 정보시스템부

참여

DW팀, 정보시스템부,

현업담당자 참여

2. 매핑초안 정의

DW팀, 정보시스템부,

ETT담당자 참여

  • ETT를 위한 기본정보 제공
  • Source vs.Target 정의
slide15

3. 시스템 구축 및 활용

3. 3. DW/DM

DM 진행 절차

1. 사용자요구사항정의

1. LDM 리뷰

2. 논리모델 확정

2. PDM 확정

  • 신규 요구사항 정의
  • LDM 확정
  • 논리모델->물리모델 변환
  • DW Data Source 검토

1. PDM 설명

DM팀, 마케팅실,

정보시스템부 참여

DM팀, 마케팅실, 정보시스템부

참여

2. 매핑초안 정의

DM팀, 정보시스템부,

ETT담당자 참여

  • ETT를 위한 기본정보 제공
  • Source vs.Target 정의
slide16

3. 시스템 구축 및 활용

3. 4. OLAP

OLAP 진행 절차

Client

Server

1.Report양식정의

1.Broadcast서버 Setting

스케줄링 등록

2.Meta_Data

작업

3.Brio Report작업

2.OnDemand서버 Setting

Document 등록

4.정형화된 Report

정보시스템부

참여

DM팀, 마케팅실, 정보시스템부

참여

Web

OLAP Web 사용자용 Interface구성

마케팅실참여

slide17

3. 시스템 구축 및 활용

3. 4. OLAP

OLAP 사례

slide18

3. 시스템 구축 및 활용

3. 5. Data Mining

Mining의 전략적 위치

  • CRM - 중심의 시스템 통합

전략의 최대 목표치 :고객 가치 증대- 고객/ 시장 세분화를 통한 target 마케팅 추진- 상품, 채널, 고객 ,시장 분석을 통해 전략 수립 기능 강화

- 정보를 이용한 체계적인 영업 활동 지원

- 보유 고객 유지, 연계 가입 증대, 신규 고객 유치

- 접촉고객에 대한 로열티 증대를 통한 고정 고객화

  • 다채널 고객 접점
  • (설계사, TM, 웹) 관리

Integration

  • 다채널 통합 캠페인 기획

고객 접점 관리

  • 예측적 분석
  • 기술적 분석

마케팅 관리

  • 고객 중심의
  • DW

고객 분석

고객 정보

slide19

3. 시스템 구축 및 활용

3. 5. Data Mining

프로젝트 목표

1차 프로젝트 : 가망 고객을 대상으로 다이렉트 채널에서 신규 가입 모델링 중심으로 진행

판매채널

대상고객

가망고객/ 잠재 고객

콜 센터/인터넷

가입

가입시의 선호 접촉 채널

및 환경에 대한 정보제공

채널 선호도/ 가격 민감도

서비스 민감도 파악

순수가망고객

이탈고객 재가입 유도

고객별 재가입 예측

순수가망고객

slide20

Loyalty

고객

증대

3. 시스템 구축 및 활용

3. 5. Data Mining

2차 프로젝트 : 기존 고객을 대상으로 전 채널에서 LTV 를 높이기 위한 모델링 중심으로 진행

세분화된

국제화재

기존

고객별

차별

고객

마케팅

적용

고객 세분화

slide21

3. 시스템 구축 및 활용

3. 5. Data Mining

1차 프로젝트 산출모델

모 델

채택 변수

기대 효과

채널 수용도

예측모델

신판매채널

수용도

성별, 연령, 지역, 보험가입사, 보험사 변경여부,

사고처리 유무, 연속 가입기간

1.35배 효과

채널 선호도

지역, 연속 가입기간

1.57배 효과

기존채널 선호

성별, 연령, 지역, 보험가입사, 보험사 변경여부,

사고처리 유무, 연속 가입기간

1.36배 효과

우편 선호도

지역, 보험사 변경여부, 사고처리 유무

1.43배 효과

전화 선호도

성별, 연령, 지역, 보험가입사, 보험사 변경여부,

사고처리 유무, 연속 가입기간

1.47배 효과

우편+전화 선호도

지역, 보험사 변경여부, 사고처리 유무

1.48배 효과

인터넷 선호도

연령, 지역, 사고처리 유무, 연속 가입기간

1.48배 효과

slide22

3. 시스템 구축 및 활용

3. 5. Data Mining

1차 프로젝트 산출 모델

모 델

채택 변수

기대 효과

가격 민감도

예측모델

가격 민감도

성별, 연령, 지역, 보험가입사, 보험사 변경여부,

사고처리 유무, 연속 가입기간

1.50배 효과

가격할인

수용도

성별, 연령, 지역, 보험 가입사, 보험사 변경여부,

사고처리 유무, 연속 가입기간

1.11배 효과

서비스 민감도 예측 모델

지역, 사고처리 유무

1.80배 효과

이탈 재가입 예측 모델

장기보험가입여부, 지역, 월평균 수당, 배서유무,

영업조직 고객 연령차, 영업조직 폐기/해촉구분,

납방 - 분할 방법(횟수),신규.갱신 구분

2.17배 효과

  • 사용변수

- 채널수용도, 가격 및 서비스 민감도 : 성별, 연령, 지역, 자동차 보험 가입사, 가입사 변경여부,

사고처리 여부, 연속 가입 기간등 7개 변수

- 이탈 재가입 모델 : 자동차 및 장기 계약사항, 보험가입경력, 영업조직특성등 20 개변수 사용

slide23

3. 시스템 구축 및 활용

3. 5. Data Mining

2차 프로젝트 산출 모델

모 델

내 용

이탈 예측 모델

- 자동차 보험 가입 고객중 이탈고객의 중요한 특성 파악을 통해

고객의 이탈 가능성을 예측하여 점수화

연계 예측 모델

- 자동차 보험 고객중 장기보험에 가입한 고객 (연계고객) 과

자동차보험에만 가입하고 있는 고객 (비연계고객) 들의 중요한

특성 파악을 통해 각 고객별로 연계가능성을 예측하여 점수화

고객 LTV 산출

  • 고객의 과거 기여도 반영
  • : 고객 행동의 변동성, 현재 가치, 수익성 관점 고려
  • 과거의 추세를 통하여 미래의 가치를 예측
  • : 고객 과거 자료의 통계적 분석을 통한 미래가치 반영
  • 1) 자동차 잔존 가능성 예측 모델
  • 2) 장기 유지 가능성 예측 모델
  • 3) 자동차 사고 가능성 예측 모델
  • 상기 요소를 이용하여 자동차 보험 고객지수, 장기 보험 고객지수
  • 및 통합 고객 지수 산출

고객 Segmentation

  • 자동차 보험 이탈율과 장기보험 연계 판매율에 따라 16개 그룹으로
  • 고객 Segmentaion
slide24

3. 시스템 구축 및 활용

3. 5. Data Mining

이탈 예측 모델

모델링 결과

모델

활용 알고리즘

채택변수

기대효과

이탈 예측 모델

Logistic Regression

(변수선택 Stepwise

entry 0.05, stay 0.05)

연속가입경력, 판매조직의 3개월 비례성수당, 정상장기가입건수, 할인할증 표준율, 판매조직의 나이, 판매조직 해촉/폐기 여부, 판매조직과 피보험자의 나이차이, 판매조직의 지역, 수납방법, 대인사고 발생여부, 전계약사, 가입담보조합, 피보헙자 연령, 차령, 판매조직 평균 총수당, 피보험자 직업, 차종재분류, 가족한정, 복수차량가입건수, 판매조직의 3개월 평가성수당, 판매조직의 종류, 판매조직의 차월수, 사고건수, 납입방법, 판매조직의 3개월 총수당, 판매조직의 성별.

1.82배 효과

  • 활용 알고리즘 : 다양한 알고리즘을 사용하여 모델링한 후 최적의 효과를 나타낸 모델에 사용한 알고리즘
  • 채택변수 : 최적의 효과를 나타내는 모델의 알고리즘에서 채택되어 모델구축에 사용된 변수
  • 기대효과 : 모델을 적용하지 않았을 경우 효과(Base line)가 1.0이라면 기대효과는 모델을 적용시켰을 때의 확률값

상위10%집단의 효과를 나타냄 ( E-miner Assessment의 Lift Value)

slide25

장기연계모델

모델

Logistic Regression

(Forward Selection

(Enter-10%)

활용 알고리즘

1회 정당보험료 그룹, 연령한정,

설계사/대리점 연령 그룹,차량용도,

배기량, 장기비율 그룹,

복수차량가입건수 그룹, 책임단독/책임+임의

구분, 영업조직 고객 연령차 그룹, 가입경력코드,

신규/갱신 구분, 할인할증 표준율 그룹,일반보험

기입유무, 판매조직과 피보험자의 지역동일여부,

판매조직성별과 피보험자성별의 조합,

피보험자 직업, 가입담보조합그룹, 월비례성

수당그룹, 납입방법, 피보험자 연령그룹,

피보험자 지역, 사고유무, 대리점/설계사성별

조합, 표준활동 재그룹, 수납형태 재그룹,

설계사/대리점 지역, 근무개월수재그룹,

월평균수당 재그룹, K사 연속가입경력

채택변수

3.36배 효과

기대효과

3. 시스템 구축 및 활용

3. 5. Data Mining

연계 예측 모델

연계 모델링 결과

slide26

LTV

모델

구성요소

  • 고객존속기간
  • 수익성
  • 관점

과거

  • 고객수익성

Marketing Mix

경영

환경

  • 이자수입
  • 비용

원가시스템

  • 거래이력
  • 속성 관점

금융시장상황

  • 사고이력
  • 원가 구조
  • 고객유지율
  • 예측 관점

미래

  • 시장이자율
  • 고객사고율

3. 시스템 구축 및 활용

3. 5. Data Mining

LTV 산출

LTV 구성 요소

운영계 또는 DW 를 활용한 고객의 데이터를

이용한 고객의 과거 시점의 점수 산출

고객 지수 산출시에

계산식으로써 반영

고객에게 일관성 있는 지수를 부여하기 위하여

고객의 판단기준에 대한 배점처리 및

상품별 가중치 처리

운영계 또는 DW 를 에서 고객의 데이터를

취득하여 마이닝을 통한 미래 예측치 산출

종합적 고려!

slide27

3. 시스템 구축 및 활용

3. 5. Data Mining

고객 세분화

  • 자동차 보험 개인계약을 이탈율과 연계판매율에 따라 16개의 그룹으로

Segmentation

낮음 높음

이탈율

높음

낮음

건수

그룹번호

분포

1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

연계율

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

slide28

3. 시스템 구축 및 활용

3. 5. Data Mining

고객 세분화

  • 12개의 유의미한 속성변수를 이용하여 segment된 집단의 특성을 평가

우수

고객군

이탈율이 낮고 연계율이 높은 집단

지속적인 관계유지를 통해 Loyalty 강화

우수고객군

이탈방지강화군

이탈방지

강화군

이탈율이 높고 연계율이 높은 집단

이탈방지 Promotion 전개

연계판매

강화군

이탈율은 낮으나 연계율이 높은 집단

연계강화 Promotion 전개

연계판매강화군

집중대상관리군

집중관리

대상군

이탈율이 높으며 연계율이 낮은 집단

집단 세분화후 기대효과가 큰 집단에

Promotion 전개

slide29

Business process

구분

세부 구분 변수

이탈율의 폭

중요도

가입상태

적용보험료

분납방법

복수차량건수

가입경력

보험가입경력

연속가입 경력

보험사 변경여부

일반보험가입건수

일반 공동물건구분

대출여부

신규/갱신구분

장기보험가입건수

정상장기보험가입건수

정상일반보험가입건수

전 계약사

전계약사 그룹

정상장기 일반보험 가입유무

3. 시스템 구축 및 활용

3. 5. Data Mining

활용 및 발전 방향

현황 파악의 활용

현황 파악 분석표를 토대로 테스트 마케팅 전략 및 마케팅 프로세스를 정립 시키고 마케팅 전략 수립의 기본방향을 제시

타겟 마케팅

현황 분석표

Matrix

조직/채널 관리

마케팅 세부전략

취약점(Risk) 관리

테스트마케팅

모델의 확률값은 Current Status 에서 고객당 예측값이고 역으로 예측치보다 더 좋은 결과를 올리려면 예측치에 영향을 많이 주는 변수에 해당되는 Business(marketing) Process에 대한 재 정립이 필요함.

Ex) 이탈율이 높은 변수에 해당되는 Business(marketing) Process 는 이탈율을 재고할수 있는 마케팅 전략을 수립

slide30

상위 10%

상위 10% 고객에 대한 마케팅 타겟 선정

상위 20%

상위 20% 고객이 주는 수익과 캠페인 비용과의 비교 후 캠페인 비용결정

상위 30%

상위 30% 고객이 총 수익에 차지하는 비중에 맞는 마케팅 전략 수립

상위 40%

세분화된 집단 내의 고객간의 상대적인 위치를 파악

상위 50%

상위 60%

상위 70%

상위 80%

상위 90%

상위 100%

3. 시스템 구축 및 활용

3. 5. Data Mining

활용 및 발전 방향

예측 확률값(Scoring 결과)의 활용

slide31

3. 시스템 구축 및 활용

3. 5. Data Mining

활용 및 발전 방향

고객 관리 Process 개선

가망 고객 관리

고객 세분화

고객군별 차별화된 가입전략

미가입

가망고객 확보

  • 차별화된 채널 전략
  • 차별화된 캠페인 전략
  • 차별화된 마케팅 전략
  • 개념적 세분화
  • 예측값에 의한 세분화
  • 확보 root 관리

가입

  • 기존고객 관리 Process

기존 고객 관리

고객/채널/시장 분석

모델링

기존 고객

적용

  • Base : 고객 가치 증대
  • 차별화된 캠페인 전략
  • 차별화된 마케팅 전략
  • 마케팅 전략 실시
  • 고객 접점 관리
  • 채널별 고객 차별과
  • 상품 분석,실적 분석
  • cross / up selling 분석
  • 이탈 고객 분석
  • 고객 세분화 분석
  • 고객 수익성 분석
  • 상품 선호도 분석
  • 고객 행동 분석
  • 캠페인 반응 분석
  • 채널별 고객 성향 분석
  • 예측 모델 or OLAP 이용 하여 고객 세분화
  • 이탈 예측 모델
  • 연계 가입 예측 모델
  • 채널 선호도 예측 모델
  • 상품 선호도 예측 모델
  • 수익 예측 모델
  • 위험도 예측 모델
  • 이탈 후 재가입 예측 모델
slide32

Opportunity

마케팅 기회 탐색

Segment Definition

Mktg.

Strategy

Mining

Score

Planning

캠페인의 계획 및 설계

Planning

Campaign

ROI

Prediction

Execution

각 채널을 통한

캠페인의 실행

Schedule

Manager

Transmission

Manager

Response

캠페인 진행 상황 확인 및

반응의 수집

Response Manager

캠페인 응답에 의한

효과 분석

Assessment

Campaign Assessment

3. 시스템 구축 및 활용

3. 6. Campaign Management

CM 개요

☞마케팅 전략에 따라 정의된 고객을 대상으로 일련의 Marketing Cycle을 자동화하는 시스템

slide33

3. 시스템 구축 및 활용

3. 6. Campaign Management

CM의 역할

  • Data Warehouse 데이터를 이용한 대상 고객 추출
  • 데이터의 정확성 검증 및 테이블간의 조인 확인
  • 캠페인 결과 분석을 위한 Data Mart 생성
  • OLAP 분석을 통해 발견된 다양한 마케팅 기회 요소 반영
  • 마이닝 결과를 활용한 대상 고객 정의, 대상 고객 분류
  • 캠페인의 신속성, 정확성을 통한 대고객 애호도 제고
  • 수익 증대

Data Warehouse

Modeling

Data Mart

ETT

Mining

Campaign

Management

slide34

3. 시스템 구축 및 활용

3. 6. Campaign Management

CM의 위치

캠페인정보

고객리스트

운영계

Data Warehouse

SAS/E-Miner

마이닝 스코어

  • 마이닝 전략 Key
  • 마이닝 분석
  • 고객 정보
  • 계약 정보
  • 마이닝 스코어
  • 캠페인 정보
  • 채널 정보

내 부

데이터

E- Insurance

OPERA@web

캠페인 전략

(시나리오)

외 부

데이터

  • 캠페인계획
  • 캠페인 일정 및 실행

Call Center

캠페인

결과

  • 고객반응 수집 및 평가
  • 캠페인정보 관리
  • 고객반응정보 관리

TEMP DB

캠페인

전략수립

캠페인 결과/반응정보

OLAP

마케팅 정보

사용자 층

  • 마케팅 관련 정보 조회
  • 캠페인 정보 조회
slide35

3. 시스템 구축 및 활용

3. 6. Campaign Management

1차 프로젝트

목 표

마이닝 스코어 데이터(선호 채널)를 바탕으로 신규 가망 고객을 대상으로 콜 센터와 Direct Mail을 이용하여

첫째, 마케팅 프로세스의 자동화 수립 및 확인

둘째, 캠페인을 실행함으로써 신규 고객을 유치

테스트 마케팅 시나리오

  • K사에서 이탈한 고객 중 자동차 보험 만기 월이 7월인 고객을
  • 대상으로 신판매 채널을 통해 재가입을 유도한다.

목 적

  • 1차 전략 : 이탈 고객 중 7월에 자동차 보험 만기가 도래하는 고객
  • 2차 전략 : 1차 전략의 대상고객 중 응답한 고객

대상고객

자동차 보험 가입 여부

응 답

6월 19일 DM 발송, 6월 21일 Call Center를 통한 Call 실시

실행방법

slide36

3. 시스템 구축 및 활용

3. 6. Campaign Management

2 차 프로젝트

CM Tool 의 Version-up

  • 대상 고객 선정의 편리성 증대
  • 채널 전송 정보의 유연화

☞ 향후 채널의 수가 늘어날 경우에도 또 다른 커스터마이징 작업 불필요

  • Excel Download, Print 기능의 추가

☞ 마케터의 보고서 작성 용이

slide37

3. 시스템 구축 및 활용

3. 6. Campaign Management

CM Tool 의 Customizing

  • 채널별 목표

: 캠페인 실행시 각 채널별 목표를 설정함으로써 캠페인의 설계를 세련화 함

☞ 캠페인별 조직별(채널별) 목표 고객수, 목표 계약건수,

목표 연간 보험료, 목표 영수 보험료 설정 및 실제 값들 조회

  • 채널(콜 센터) 가용량 조회

: 캠페인 설계시 콜 센터의 캠페인 현황을 조회함으로써 채널 용량에 맞는 캠페인을 기획

☞ 통화량 내역 : 마감년월, 총 통화콜수(O/B, I/B), TMR 평균활동 일수, 1인당 하루평균 통화콜수

예상가용 DB : 차수, 입력년월일, 잔여DB수, 총 TMR수, 일일평균콜수(1인당), 예상DB종료기간

  • 영업 이익 계획 및 조회(ROI조회 기능 보강)

: ROI 기능 이외에 K사의 특성에 맞는 항목들로 캠페인의 효과를 예측하고 결과를 확인

☞ 보종별 마케팅 비용, 채널 비용(직접판매비율, 간접판매비율, 통신비),

기타경비율, 목표 업무수지율

slide38

3. 시스템 구축 및 활용

3. 6. Campaign Management

  • 채널 사용량 조회(통화량내역/예상가용 DB)
  • 채널별 목표
slide39

목 적

대상고객

3. 시스템 구축 및 활용

3. 6. Campaign Management

마케팅 시나리오 1

<OPERA@web 을 이용한 설계 화면>

<시나리오 1> Random하게 뽑은 1,000명 고객

RANDOM SAMPLING

보험 만기가 도래한 고객을 대상으로

콜 센터와 조직을 통해

보험 갱신을 유도

보험 만기가

2001년 1월 8일 ~ 1월 17일인 고객 중

Random하게 뽑은 1000명의 고객

응 답

K사 자동차 보험 갱신 여부

1000명을 네 그룹으로 나누어

1.캠페인 정보(조직) & call

2.캠페인 정보(조직)

3.Call

4.Control

캠페인의 효과 측정

실행방법

slide40

3. 시스템 구축 및 활용

3. 6. Campaign Management

CM 도입 효과

After

Before

  • 개인 고객을 대상으로 캠페인 활동 전무
  • 최적화된 마케팅 전략 설정의 어려움
  • 마케팅 시뮬레이션 불가능
  • 개인 고객을 대상으로 다양한 캠페인 활동
  • OLAP,Mining을 통한 최적의 마케팅 전략
  • 다양한 마케팅 시뮬레이션 가능
  • 정확한 대상자 선정시간 및 비용 절감

전략설정

  • 마케팅 프로세스 통합, 자동 진행
  • 마케팅 담당자에 의한 손쉬운 진행
  • 인력 절감
  • 스케줄에 의한 프로세스 관리 용이
  • 마케팅 세부단계별 전문담당자에 의한

수동적 진행

  • 여러 분야의 전문인력 확보 필요
  • 인력 및 비용 낭비 초래
  • 프로세스 진행 및 관리 미흡

5.6 프로젝트 평가

마케팅

프로세스

  • 다양한 채널관리의 어려움
  • 마케팅 이력 관리의 어려움
  • 마케팅 반응 분석시 자료수집의 복잡성
  • 다양한 채널관리 가능
  • 마케팅 이력 관리 및 수행된 전략과

연계한 전략 수행 용이

채널관리/

피드백관리

slide41

Campaign Management

  • 전략이관 및 캠페인계획
  • 캠페인 일정 및 실행
  • 고객반응 수집 및 평가
  • 고객 프로파일링
  • 고객프로파일
  • 캠페인정보
  • 고객반응정보

3. 시스템 구축 및 활용

3. 7. 통합과 연계

운영계

Data Warehouse

Mining

  • 마이닝 분석
  • 모델 구축/스코어링

내 부

데이타

설계사/대리점

스코어/모델

  • 고객 정보
  • 계약 정보
  • 마이닝 스코어
  • 캠페인 정보
  • 채널 정보

캠페인 전략

(시나리오)

고 객

외 부

데이타

ETT

E_Insurance

캠페인

결과

캠페인정보

고객리스트

캠페인

전략수립

Call Center

TEMP DB

캠페인 결과/반응정보

마케터

Mart & OLAP

마케팅 정보

사용자 층

  • 마케팅 정보 조회 및 분석
  • 캠페인 정보 조회
slide42

4. 시사점

1. Big Picture 가 있는가?

- 중장기적인 전략/ 전사적인 공감대

2. CRM은 Process 가 우선되어야 한다.

- 자사의 CRM Process에 적합한 시스템의 도입

3. CRM 시스템은 기반 인프라다.

- 기존 시스템과 연계 통합 프로세스

- 확장성, To-be 관점

4. 강력한 Sponsorship 확보는 필수.

- 일관성, 추진력, 공감대

slide43

4. 시사점

5. On-Line과 Off-Line 고객이 다르지 않다.

- 고객은 Single Image를 원한다

- 채널의 연계, Data의 통합

6. Solution 벤더(업체)는 벤더일 뿐이다.

- CRM 업체는 CRM을 모른다.

- Project Managing/내부 인력의 양성

7. 시스템 구축은 CRM의 시작이다.

- 누가 어떻게 운영할 것인가?

- 성급한 성과의 판단은 실패의 지름길(?)

8. 테스트, 테스트, 테스트