slide1 n.
Download
Skip this Video
Download Presentation
Regenerative Electric Flight Synergy and Integration of Dual-role Machines

Loading in 2 Seconds...

play fullscreen
1 / 46

Regenerative Electric Flight Synergy and Integration of Dual-role Machines - PowerPoint PPT Presentation


  • 109 Views
  • Uploaded on

Regenerative Electric Flight Synergy and Integration of Dual-role Machines J. Philip Barnes 25 Oct 2014. Animated slides: F5 key Also: View ~ "Notes Page". Great theoreticians and experimentalists (all Ph.D.).

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Regenerative Electric Flight Synergy and Integration of Dual-role Machines' - paloma-steele


Download Now An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

Regenerative Electric Flight

Synergy and Integration of Dual-role Machines

J. Philip Barnes 25 Oct 2014

Animated slides: F5 key

Also: View ~ "Notes Page"

Regenerative Electric-powered Flight J. Philip Barnes

slide2

Great theoreticians and experimentalists (all Ph.D.)

Ludwig Prandtl - Germany

Albert Betz - Germany

Photo

Permission

requested

Photo

Permission

requested

Academy of

Achievement

Royal Aeronautical Society

Hermann Glauert - U.K.

Paul MacCready - USA

Regenerative Electric-powered Flight J. Philip Barnes

slide3

Presentation Contents

  • Regen. elec. flight: Origin & Introduction
  • Dual-role machines:
    • Propeller and wind turbine
    • DC motor-generator
    • Brushless motor-generator
  • Integration:
    • Inverter-rectifier
    • DC boost converter
    • "Chop" Vs. "Boost" architecture
  • “Regenosoar” aircraft concept
  • Summary & Look Ahead
slide4

Regen Aircraft Elements and Operation

  • Windprop
    • Fixed rotation direction
    • Sign change with mode
      • Thrust, Torque
      • Power, Current

Motor-Gen

(M-G)

Power

Electronics

  • Energy Storage Unit:
    • Battery and/or:
    • Ultra capacitor
    • Flywheel w/M-G

Exploit opportunities to

store Vs. expend energy

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide5

Presentation Contents

  • Regen. elec. flight: Origin & Introduction
  • Dual-role machines:
    • Propeller and wind turbine
    • DC motor-generator
    • Brushless motor-generator
  • Integration:
    • Inverter-rectifier
    • DC boost converter
    • "Chop" Vs. "Boost" architecture
  • “Regenosoar” aircraft concept
  • Summary & Look Ahead
slide6

Propeller Wake, Pitch, and Blade Angles

  • Wake induces downwash
  • (normal to local section)
  • Pitch:
    • helix length per rotation
    • htip = 2 p R tan btip
  • Uniform pitch:
    • r tanb = R tanbtip
  • Blade tip angle (btip):
    • 14o ~ low pitch
    • 30o ~ high pitch

Horseshoe

Vortices

R

r

  • Effect of more blades (fixed T, R):
  • Steep blade angle, much lower RPM
  • Lower tip Mach, much-reduced noise
  • High torque → dual & counter rotation
  • Numerically integrate wake for loading

Blade angle (b) at radius (r)

is measured from rotation

plane to the chord line at (r)

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide7

Test data validating Glauert's rationale on induced velocity

F.E. Weick, Aircraft Propeller Design, McGraw-Hill, p. 102-103

Gradual buildup

Immediate swirl, as predicted by Glauert

Regenerative Electric-powered Flight J. Philip Barnes

slide8

Rotor blade velocity diagram - "Pinwheeling" condition

  • Propeller or wind turbine
  • Angle of attack = 0
  • No change to flow direction
  • No change to relative wind
  • Helical drag wake (unloaded)
  • wr tanb= Vo (all sections)
  • or, r tanb= const.=R tanbtip

W2

Helical wake

w r

Blade section

Looking outboard,

Blade at 3 o’clock

Vo

Chord line

Axial

wind

b

Pinwheeling sets up "Betz Condition"

  • Propeller or turbine at no load

Perturb w or Vo to load rotor

  • Helical wake (drag and/or vortex)
  • Sets blade angle distribution b(r):

b = tan-1 [ Vo / (wr) ]

  • Says nothing about blade planform

Vo

Relative

wind W1

b

Rotational

wind,w r

Vo

J. Philip Barnes www.HowFliesTheAlbatross.com

slide9

Propeller blade - comprehensive velocity diagram

  • Non-rotational (axial) inflow
  • Axial velocity locally conserved
  • Finalswirl imparted suddenly
  • Helical wake anchored at c/4
  • Wake ~ aligned with chordline
  • Wake-induced velocity (Vi)
  • Glauert: 2Viq at "rotor out"
  • Absolute velocity (V) increased
  • Relative wind (W) decreased
  • Immediate static pressure rise

W2

Blade section

Looking outboard

Blade at 3 o’clock

Helical wake

vortex sheet

w r - 2Viq

V1

Chord line

V2

b

Axial

wind

Vix

V1  Vo+Vix

Vi

Viq

Glauert: consistent physics & geometry

Vortex wake ~ aligned with chord line

Betz cond. (wake helix), prop or turbine,

with or without rotor loading, provided:

r tan b= const. and z=0 (sym. sections)

f

Zero-lift line

Rotational wind

Wq w r - Viq

z

Relative

wind W1

a

V1

J. Philip Barnes www.HowFliesTheAlbatross.com

slide10

Windprop Blade Angle and Operational Mode

b

L

b

b

v

v

v

w r

-L

w r

w

w r

w

w

  • Symmetrical sections and r tanb = R tanbtip

Turbine

Propeller

Pinwheel

  • Pinwheeling: Zero angle of attack, root-to-tip
    • - No thrust, no torque, small drag
  • Efficient prop: Rotate ~115% of “pinwheel RPM,” or fly at 87% of “pinwheel airspeed”
  • Efficient turbine: Rotate ~ 87% of “pinwheel RPM,” or fly at 115% of “pinwheel airspeed”

Define: “Speed ratio,” s v / vpinwheel = v / [ wR tanbtip ]

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide11

o

o

b

b

= 14

= 30

Low-RPM8 Blades,

tip

tip

1.0

Efficiency

0.8

c

c

l_min

l_max

Blades_btip

2_14o

8_30o

0.6

h

Propeller

f v / (t w)

Turbine

t w / (f v)

0.4

0.2

Speed Ratio, s ≡ v / (w R tan btip)

0.0

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.0

0.9

Propeller ~ climb

Force Coefficient, F ≡ f/(qpR2)

0.8

High-RPM2 Blades,

B=8

0.7

B=2

0.6

0.5

0.4

Propeller

~ cruise

0.3

F

Sym. Sections

0.2

b

b

tan

R

r

=

tan

tip

Max efficiency

0.30

0.1

Blade Geometry

Regeneration

Max capacity

0.25

0.0

Regeneration

Pinwheel

0.20

R

Chord, c/

-0.1

0.15

F= -0.011 @ B=2

Thickness

2

-0.2

0.10

F= -0.008 @ B=8

8

hub

-0.3

0.05

Speed Ratio, s≡ v / (w R tan btip)

R

r /

-0.4

0.00

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.00

0.25

0.50

0.75

1.00

Windprop Efficiency and Thrust

  • Comparable efficiency by mode
  • Eight blades quieter than two
  • Climb power ~ 7x cruise power

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide12

Presentation Contents

  • Regen. elec. flight: Origin & Introduction
  • Dual-role machines:
    • Propeller and wind turbine
    • DC motor-generator
    • Brushless motor-generator
  • Integration:
    • Inverter-rectifier
    • DC boost converter
    • "Chop" Vs. "Boost" architecture
  • “Regenosoar” aircraft concept
  • Summary & Look Ahead
slide13

Motor-generator Principles

t

Electromotive force, e

= potential energy / charge

= work / charge, (Fp / q) L

= 2 N w (D/2) B L

e = NDBL w ≡ k w

(+) Charge (q) with velocity, V

in magnetic field of strength, B:

Force vector, F = q V x B

L

N turns

k = "EMF constant"

B

w

Fq

e

i

i

Fp

Torque, t

= 2N (D/2) B (dx/dt) dq

= 2N (D/2) B (dq/dt) dx

t = NDBiL = NDBL i = k i

vi

B

vq

E

t w = e i

Both

modes

t

Motoring

N turns

w

Fq

e

i

i

Fp

vi

B

Change to generator mode:

Same direction, rotation, w

Same sign for EMF, e

Sign change of torque, t

Sign change of current, i

vq

E

Generating

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide14

System Motoring and Regeneration Efficiencies

Typical controller pulse-width

modulation (PWM) of duty cycle

(d) and efficiency h ≈ d 0.25 (*)

Rt

System total

resistance

em=kw

t

eb

w

Torque

Motor

Regen

i

  • "Ideal system efficiency" ignoring controller and all losses
  • system motor ≈ t w/(eb i) ≈ emi / (eb i) = em/ eb = k w / eb
  • system regen ≈ ebi / (tw) ≈ eb i / (emi) = eb / em=eb / (k w)

(*) AiAA 2010-483, Lundstrom, p.8

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide15

Motor-generator & Battery ~ Performance Envelope and Data

100% Duty Cycle

eb /(kw)

THEO. EFFICIENCY, kw/eb

CURRENT GROUP, i Rt / eb

TORQUE GROUP, t Rt / (k eb)

REGENERATION

LMC "generator curve"

48V / 3,600 RPM

k = 0.16 N-m/A

Rt = 0.041 Ohm

LMCLTD.net

MOTORING

EEMCO 427D100

24V / 15,000 RPM

k = 0.015 N-m/A

Rt = 0.075 Ohm

Windprop synergy

i

t

Phil Barnes Apr-08-2011

Trends match theory

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide16

Presentation Contents

  • Regen. elec. flight: Origin & Introduction
  • Dual-role machines:
    • Propeller and wind turbine
    • DC motor-generator
    • Brushless motor-generator
  • Integration:
    • Inverter-rectifier
    • DC boost converter
    • "Chop" Vs. "Boost" architecture
  • “Regenosoar” aircraft concept
  • Summary & Look Ahead
slide17

Brushless "DC" Motor-generator ~ "Y" configuration

Brushed Vs. Brushless

Virtues, features, & limits

Brushed:

Theory foundation

tw=ei ; e=kw ; t=ki

2-wire interface

Simplified control

Brush maintenance

~120V limit (arcing)

Low-speed cogging

N

S

Brushless:

Inverter required

3-wire interface

>1000V capable

Minimal cogging

Same as brushed:

tw=ei ; e=kw ; t=ki

Regenerative Electric-powered Flight J. Philip Barnes

slide18

Brushless motor-gen. & inverter: Equivalent DC machine

t w = emi

motor or gen

Equivalent DC machine

Inverter-

Rectifier

t

M-G

eb

w

i

Brushless machine with inverter/rectifier as a system follows brushed DC machine principles: tw = emi ; em = kw ; t = k i

Both systems have 2-wire interface with the power circuit

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide19

Presentation Contents

  • Regen. elec. flight: Origin & Introduction
  • Dual-role machines:
    • Propeller and wind turbine
    • DC motor-generator
    • Brushless motor-generator
  • Integration:
    • Inverter-rectifier
    • DC boost converter
    • "Chop" Vs. "Boost" architecture
  • “Regenosoar” aircraft concept
  • Summary & Look Ahead
slide20

Transistor and flyback diode

  • "High-tech, high-power light switch"
  • Inverter commutation & DCBC boost adjust
  • Lo-freq. (20-100 Hz) for commutation
  • Hi-freq. (>10 kHz) pulse-width-mod (PWM)
  • VGE (say 12 V) sets the collector current IC
  • Collector voltage VCE(say 600 V) sets power
  • Flyback diode for switch energy dissipation
  • iGBT & diode unidirectional (via arrows)
  • Transistor ~ 2V loss ; Diode ~ 0.7V loss

IC

iGBT

MOSFET

VCE

Collector

Flyback

Diode

Gate

VGE

Emitter

Gate voltage (VGE) "opens the valve"

Gate voltage, VGE

Gate voltage, VGE

Regenerative Electric-powered Flight J. Philip Barnes

slide21

Inverter-rectifier ("inverter" for motoring mode)

VB

1

1

2

2

3

3

VB

  • Switch pairs: one "upper" & one "lower"
  • Avoid short circuit: Always "diagonalize"
  • Each phase, per cycle:
  • - Connect to battery voltage 120o
  • - Connect to ground 120o
  • - "Float" twice for 60o each float
  • Inverter converts 2-wire DC to 3-wire "AC"
  • Commutation toggles each phase 0-to-VB

Regenerative Electric-powered Flight J. Philip Barnes

slide22

DC-to-AC conversion ~ "inverter" commutation waveforms

AC basis

"Dead time" avoids short circuit

Inverter

Regenerative Electric-powered Flight J. Philip Barnes

slide23

Inverter-rectifier ("inverter" for motoring mode) ~ Snapshots

VB

VB

VB

VB

1

1

1

1

1

1

1

VB

VB

VB

1

2

2

2

2

2

2

VB

2

2

3

3

3

3

3

3

3

3

"Upper" switch pairs diagonally with a lower switch

Two phases are operating; one phase is "floating"

Regenerative Electric-powered Flight J. Philip Barnes

slide24

Inverter-rectifier ("rectifier" for generating mode) - iGBT

Snapshot

E1 - E3 > EB

1

1

2

2

EB

Diodes provide

"free" regen!

3

3

Current to battery!

  • Rectifier converts 3-wire AC to 2-wire DC
  • Battery is recharged via flyback diodes
  • Diodes enable only two phases at once
  • Commutation "ignored" (unidirect. iGBT)

Regenerative Electric-powered Flight J. Philip Barnes

slide25

Inverter-rectifier ("rectifier" for generating mode) - MOSFET

E1 - E3 > EB

1

1

2

2

3

3

EB

Current to battery

  • Rectifier converts 3-wire AC to 2-wire DC
  • Charge battery via MOSFETs & flyback diodes
  • Bi-directional: Comm. MOSFET assists diode

Regenerative Electric-powered Flight J. Philip Barnes

slide26

Pulse-width modulation: Energy loss due to "chopping"

  • Commutation voltage cycle

ion

iav

  • Comm. + PWM superimposed

|| dt

| t |

  • At a given voltage, cruise current ≈ 15% of climb or accel current
  • Superimposed on commutation: PWM "chopping" at part load
  • Typical switching frequency (f) for chopping ≈ 20 kHz (inaudible)
  • Reduce the duty cycle (d) to reduce average current (iav = d ion)
  • Energy is lost (iGBT & diode) with each on/off switching cycle
  • Per-iGBT switching energy loss (Sp) ≈ 20 mJ per switch cycle
  • To minimize chopping losses, apply PWM only to "upper" phase
  • Switch power loss = f Sp = 0.4-1.0 kW = 13-05% @ 3-20 kW/phase

Remove PWM from commutation; Incorporate DC boost converter

Regenerative Electric-powered Flight J. Philip Barnes

slide27

Presentation Contents

  • Regen. elec. flight: Origin & Introduction
  • Dual-role machines:
    • Propeller and wind turbine
    • DC motor-generator
    • Brushless motor-generator
  • Integration:
    • Inverter-rectifier
    • DC boost converter
    • "Chop" Vs. "Boost" architecture
  • “Regenosoar” aircraft concept
  • Summary & Look Ahead
slide28

DC boost converter enables efficient motoring & regen

VM

L

M-G

brushed

or

brushless

with inv.

VB

C

iGBT

PWM

Boost battery voltage to efficiently drive the M-G as a motor

Boost motor-generator EMF to efficiently recharge the battery

  • DCBC: Key enabler, efficient bi-directional power management
    • Only the motoring mode is shown in the introductory graphic above
  • “Boosts” DC voltage ~ 0-500 % with minor input/output ripple
  • Power conservation: doubling the voltage halves the current
  • Enables reduced battery totem pole length, i.e. Toyota Prius*
  • DC voltage gain or “boost” is controlled by PWM “duty cycle”
  • PWM used for DCBC gate current, not motor-gen main current

Regenerative Electric-powered Flight J. Philip Barnes

slide29

DC boost converter – Equivalent circuits

VM

L

M-G

brushed

or

brushless

with inv.

VB

C

iGBT

PWM

iGBT on

iGBT off

iB

iB

VM

VM

iM

iM

L diB /dt

L diB /dt

C dVM/dt

VB

VB

C dVM/dt

dt |--t--|

iGBT gate PWM

d≡ duty cycle ; t≡ period

Regenerative Electric-powered Flight J. Philip Barnes

slide30

DC boost converter – Voltage gain & conversion efficiency

Time segment 1: iGBT on for Dt = dt

Segment 2: iGBT off for Dt = (1-d)t

[a] Voltage loop: VB - L DiB1 /(dt) = 0

[b] VB - L DiB2 /[(1-d)t] = VM

iB

iB

VM

VM

[c] Output current: iM - C DVM1 /(dt) = 0

[d] iB - C DVM2 /[(1-d)t] = iM

iM

iM

L DiB2 /[(1-d)t]

L DiB1 /(dt)

[e] PWM cycle: DiB1 + DiB2 = 0

[f] DVM1 + DVM2 = 0

C DVM1/(dt)

C DVM2 /[(1-d)t]

[g] Combine [a,b,e]: VM/VB = 1/(1-d)

VB

[h] via [c,d,f]: iM/iB = 1-d

VB

Combine [g,h]: h ≡iMVM /(iBVB) = 1

iGBT gate PWM

dt |--t--|

  • Voltage gain is set by duty cycle (d)
  • Efficiency = 1 (resistance neglected)

d≡ duty cycle ; t≡ period

Regenerative Electric-powered Flight J. Philip Barnes

slide31

DC boost converter - efficiency and regen application

233 Vdc in

Regen

Cruise

Climb

Regen

5 10 15 20 kW

Motor

"Evaluation of 2004 Toyota Prius,"

Oakridge National Lab, U.S. Dept. of Energy

L

VB

M-G

C

iGBT

PWM

  • DC boost converter integrates windprop and motor-generator
  • Adjust PWM duty cycle to hold voltage gain as RPM decreases
  • Efficient bi-directional power over a wide operating range

Regenerative Electric-powered Flight J. Philip Barnes

slide32

Voltage Map - Motoring and Regen with DC boost converter

Batt, boost factor 3.0

Voltage

Climb

Batt: 600V

M-G: 400V

M-G, boost = 2.0

M-G, boost = 1.5

Batt, boost factor 2.0

Cruise

Max Regen

M-G: 260V

Batt: 200V

Motor-gen EMF, no boost

Opt. Regen

Battery, no boost

  • Boost the battery for motoring
  • Boost the M-G for regeneration

%RPM

Regenerative Electric-powered Flight J. Philip Barnes

slide33

Presentation Contents

  • Regen. elec. flight: Origin & Introduction
  • Dual-role machines:
    • Propeller and wind turbine
    • DC motor-generator
    • Brushless motor-generator
  • Integration:
    • Inverter-rectifier
    • DC boost converter
    • "Chop" Vs. "Boost" architecture
  • “Regenosoar” aircraft concept
  • Summary & Look Ahead
slide34

Architectures compared

i

Inverter-

Rectifier

eb

M-G

PWM superimposed on commutation

"Chopper" architecture

PWM main current chop

Cruise: high chopping loss

Regen: none or inefficient

PWM

w

w

t

t

Commutation

12V

i

Inverter-

Rectifier

DC Boost

Converter

2-way boost

eb

M-G

"Boost" architecture

PWM sets DCBC boost

Efficient motor & regen

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide35

Presentation Contents

  • Regen. elec. flight: Origin & Introduction
  • Dual-role machines:
    • Propeller and wind turbine
    • DC motor-generator
    • Brushless motor-generator
  • Integration:
    • Inverter-rectifier
    • DC boost converter
    • "Chop" Vs. "Boost" architecture
  • “Regenosoar” aircraft concept
  • Summary & Look Ahead
slide36

Regenosoar - Features and Design Rationale

Regen parked in the wind

With safety perimeter

Counter rotors

Symmetric flow

Zero net torque

8-blade rotors

Low RPM, quiet, Low vibration

Low tip Mach

Ground handling

No assistance req'd

Winglet tip wheels

Pod-air-cooled MG & PE

Compact power train

Battery, motor-gen

and powertrain

Pusher Config.

Symmetry upstream

Max. laminar flow

Regenerative Electric-powered Flight J. Philip Barnes

slide37

Min. Sink

Section

Windprop

System

Removed

Max L/D

Section and Vehicle Drag Polars

"Clean configuration" ~ Windprop System Removed

1.50

Lift Coefficient, c

or c

L

l

1.25

1.00

"Clean" aircraft

0.75

0.50

0.25

Drag Coefficient, c

or c

D

d

0.00

0.00

0.01

0.02

0.03

0.04

0.05

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide38

Steady-state load factor (nn) ~ “g-load” and turn radius

L= nn w

v

nn L/ w = cosg / cosf *

Glide: nn 1

Turn: nn 1 / cosf

f

g

* SAE 2004-01-3088 EQN 5.2, dg/dt = 0

w

Load Factor and Bank Angle

Load Factor and Turn Radius

400

1.05

50

350

n

Bank Angle

Turn Radius, m

n

300

fo

40

1.1

250

r = v2(cosg) / (g tanf)

30

200

1.2

f = cos-1[(cosg)/nn)]

Thermaling

150

20

1.4

1.6

100

10

50

Load Factor, nn

Airspeed, v_km/h

0

0

0

20

40

60

80

100

120

140

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide39

Load Factor and “Clean” Sink Rate

0.0

dz/dt ~m/s

Sea level

Max L/D

2

25 kg / m

Min Sink

A = 16

-0.5

1.0

-1.0

1.2

1.4

-1.5

1.6

g-Load, nn

-2.0

Airspeed, v ~ km/h

-2.5

50

60

70

80

90

100

110

120

130

140

150

cL= nn w / (qs)

“Clean” REGEN

Windprop removed

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide40

Steady-state climb or descent ~ New Formulation, New Insight

Derive steady-climb Equation

f

v

L= nn w

T-D

g

g

w

Note:nn= cosg /cosf *

cL= nn w / (qs)

  • Glider, soaring bird, or "clean" regen
    • T/D=0 (no thrust)
    • Sink rate (-dz/dt) = nn(D/L)v
  • With or without propulsion system
    • Sink increases with g-load (nn)
    • D/L also increases with (nn)
    • Sink increases with airspeed (v)
  • Regen operating mode T/D
  • climb 6.3
  • cruise = 1.0
  • pinwheel glide -0.1
  • efficient regen (thermal) -0.4
  • capacity regen (descent) -1.0

* SAE 2004-01-3088 EQN 5.2, dg/dt = 0

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide41

Regenerative Electric Flight Equation and Implications

  • Regen must have
  • Updraft
  • High L/D, Low sink
  • High efficiency
    • Prop & turbine
    • Energy storage

“Clean”

sink rate

Windprop

Effect

Updraft

  • e ≡ “Exchange Ratio,” as applicable:
  • turbine system efficiency ~71%
  • 1 / propeller system efficiency
  • 0 for pinwheeling (no exchange)

“Total

Climb”

“Total Sink”

thermal updraft contours
Thermal Updraft Contours

Elevation, zo ~ m

  • 1oC warmer-air column
  • 20-minute lifetime
  • ~ solar power x 10

U ~ m/s

1

2

3

Total Energy

= Kinetic

+ Potential

4

Total Energy

= Kinetic

+ Potential

+ Stored

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide43

Climb and Regeneration in the Thermal (minimum-sink airspeed)

Elevation, m

Elevation, m

Climb rate Contours

Energy rate Contours

Optimum

Elevation, m

Equilibrium Regeneration

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide44

Regenerative Electric Flight Equation Applied for RegenoSoar

0.82

0.88

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com

slide45

Presentation Contents

  • Regen. elec. flight: Origin & Introduction
  • Dual-role machines:
    • Propeller and wind turbine
    • DC motor-generator
    • Brushless motor-generator
  • Integration:
    • Inverter-rectifier
    • DC boost converter
    • "Chop" Vs. "Boost" architecture
  • “Regenosoar” aircraft concept
  • Summary & Look Ahead
slide46

Regenerative Electric-powered Flight

  • Windprop: 8 blades spin slow, quiet, & efficient
  • DC & BLDC machines: EMF proportional to RPM
  • M-G & battery verify theoretical efficiency trends
  • Synergy of windprop & MG: Efficiency Vs. RPM

- Optimum “speed ratios” ~ 85% & 115% by mode

  • Popular "chopper" control: inefficient at cruise
  • DC boost converter: efficient climb, cruise, regen
  • Regen applications:
    • Thermal, ridge, wave, final descent, ....
    • UAV fleet, storm rider, earth observer, ....
  • Give up 2% prop efficiency w/symmetric sections to gain perhaps 5-15% range and/or flying time

VM

M-G

iGBT

A "regen" is coming soon to an airport near you!

Regenerative Electric-powered Flight J. Philip Barnes www.HowFliesTheAlbatross.com