Advantages of Multivariate Analysis

1 / 9

# Advantages of Multivariate Analysis - PowerPoint PPT Presentation

Advantages of Multivariate Analysis. Close resemblance to how the researcher thinks. Easy visualisation and interpretation of data. More information is analysed simultaneously, giving greater power. Relationship between variables is understood better.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## Advantages of Multivariate Analysis

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Advantages of Multivariate Analysis
• Close resemblance to how the researcher thinks.
• Easy visualisation and interpretation of data.
• More information is analysed simultaneously, giving greater power.
• Relationship between variables is understood better.
• Focus shifts from individual factors taken singly to relationship among variables.
Definitions - I
• Independent (or Explanatory or Predictor) variable always on the X axis.
• Dependent (or Outcome or Response) variable always on the Y axis.
• In OBSERVATIONAL studies researcher observes the effects of explanatory variables on outcome.
• In INTERVENTION studies researcher manipulates explanatory variable (e.g. dose of drug) to influence outcome
Definitions - II
• Scatter plot helps to visualise the relationship between two variables.
• The figure shows a scatter plot with a regression line. For a given value of X there is a spread of Y values. The regression line represents the mean values of Y.
Definitions - III
• INTERCEPT is the value of Y for X = 0. It denotes the point where the regression line meets the Y axis
• SLOPE is a measure of the change in the value of Y for a unit change in X.

Y axis

Slope

Intercept

X axis

Basic Assumptions
• Y increases or decreases linearly with increase or decrease in X.
• For any given value of X the values of Y are distributed Normally.
• Variance of Y at any given value of X is the same for all value of X.
• The deviations in any one value of Y has no effect on other values of Y for any given X
The Residuals
• The difference between the observed value of Y and the value on the regression line (Fitted value) is the residual.
• The statistical programme minimizes the sum of the squares of the residuals. In a Good Fit the data points are all crowded around the regression line.

Residual

Analysis of Variance - I
• The variation of Y values around the regression line is a measure of how X and Y relate to each other.
• Method of quantifying the variation is by Analysis of variance presented as Analysis of Variance table
• Total sum of squares represents total variation of Y values around their mean - Syy

Analysis of Variance - II

Total Sum of Squares ( Syy ) is made up of two parts:

(i). Explained by the regression

(ii). Residual Sum of Squares

Sum of Squares ÷ its degree of freedom = Mean Sum of Squares (MSS)

The ratio MSS due to regression ÷ MSS Residual = F ratio