1 / 42

Bayesian calibration and uncertainty analysis of dynamic forest models

Bayesian calibration and uncertainty analysis of dynamic forest models. Marcel van Oijen CEH-Edinburgh. Input to forest models and output. Imperfect input data. Height. Environmental scenarios. NPP. Initial values. Soil C. Parameters. Model. Input to forest models and output. Model.

osborn
Download Presentation

Bayesian calibration and uncertainty analysis of dynamic forest models

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bayesian calibration and uncertainty analysis of dynamic forest models Marcel van Oijen CEH-Edinburgh

  2. Input to forest models and output Imperfect input data Height Environmental scenarios NPP Initial values Soil C Parameters Model

  3. Input to forest models and output Model [Levy et al, 2004]

  4. Input to forest models and output bgc century hybrid NdepUE (kg C kg-1 N) [Levy et al, 2004]

  5. Simpler models? Goal: Robust models, predicting forest growth over 100 years, with low uncertainty Effects that must be accounted for: N-deposition CO2 Temperature Rain Radiation Soil fertility Management, e.g. thinning ... Are simple, robust models possible? Typical model size: 50 - 311 parameters

  6. Simple (semi-)empirical relationships • Lieth (1972, “Miami”-model): NPP = f(Temperature, Rain) • Monteith (1977): NPP = LUE * Intercepted light • Gifford (1980): NPP = NPP0 (1 + β Log([CO2]/[CO2]0) ) • Gifford (1994): NPP = 0.5 GPP • Temperature ~ Light intensity • Roberts & Zimmermann (1999): LAImax  Rain • Beer’s Law: Fractional light interception = (1-e-k LAI) • West, Brown, Enquist, Niklas (1997-2004): Height ~ Mass¼ ~ {fleaf, fstem, froot} • Brouwer (1983): Root-shoot ratio = f(N) • Goudriaan (1990): Turn-over rates, SOM,litter

  7. BASic FORest model (BASFOR) BASFOR 39 parameters 24 output variables

  8. BASFOR: Inputs Weather & soil: Skogaby (Sweden) BASFOR 24 output variables

  9. Forest data from Skogaby (Sweden) Skogaby Planted: 1966, (2300 trees ha-1) Weather data: 1987-1995 Soil data: C, N, Mineralisation rate Tree data: Biomass, NPP, Height, [N], LAI

  10. BASFOR: Inputs Weather & soil: Skogaby (Sweden) BASFOR 24 output variables

  11. BASFOR: Inputs P(p1) p1,max p1,min Weather & soil: Skogaby (Sweden) BASFOR 24 output variables P(p39) p39,max p39,min

  12. BASFOR: Prior predictive uncertainty Wood C Height NPP Skogaby, not calibrated (m ± σ)

  13. BASFOR: Predictive uncertainty Calibration of parameters Data: measurements of output variables BASFOR 39 parameters High input uncertainty 24 output variables High output uncertainty

  14. Calibration Bayesian calibration: P(p|D) = P(p) P(D|p) / P(D) P(p) L(f(p)|D) “Posterior distribution” “Prior distribution” Calibration = “Find P(p|D)” “Likelihood” given mismatch between model output & data: f P(p) P(f(p)) D

  15. Calibration f P(p) P(f(p)) D Bayesian calibration P(p) P(f(p))

  16. Data Skogaby (S) Wood C Height NPP

  17. Calculating the posterior distribution Solutions Sampling problem: Markov Chain Monte Carlo (MCMC) methods Computing problem: Computer power, Numerical software Bayesian calibration: P(p|D)P(p) L(f(p)|D) • Calculating P(p|D)costs much time: • Sample parameter-space representatively • For each sampled set of parameter-values: • Calculate P(p) • Run the model • Calculate errors (model vs data), and their likelihood

  18. Markov Chain Monte Carlo (MCMC) • Start anywhere in parameter-space: p1..39(i=0) • Randomly choose p(i+1) = p(i) + δ • IF: [ P(p(i+1)) L(f(p(i+1))) ] / • [ P(p(i)) L(f(p(i))) ] > Random[0,1] • THEN: accept P(i+1) & i=i+1 • ELSE: reject P(i+1) • 4. IF i < 104 GOTO 2 • E.g. {SLA=5, k=0.4, ... <39 parameters> ...} • Use multivariate normal distribution for [δ1, ... ,δ39] • Run BASFOR. • Assume normally distributed errors: L(output-dataj) ~ N(0,σj) with different σj for each datapoint MCMC: walk through parameter-space, such that the set of visited points approaches the posterior parameter distribution P(p|D) Metropolis algorithm BASFOR (~ 30 lines of code)

  19. MCMC parameter trace plots: 10000 steps Param. value Steps in MCMC

  20. Marginal distributions of parameters

  21. Parameter correlations (PCC) 39 parameters 39 parameters

  22. Posterior predictive uncertainty Skogaby, calibrated (m ± σ) Wood C NPP Height

  23. Posterior predictive uncertainty vs prior Wood C NPP Height Skogaby, not calibrated (m ± σ) Skogaby, calibrated (m ± σ)

  24. Partial correlations parameters – output variables 24 output variables Wood C 39 parameters

  25. Wood C vs parameter-values

  26. Partial correlations parameters – wood C Allocation to wood Senescence stem+br. Max Nleaf Nroot SOM turnover x p

  27. Should we measure the “sensitive parameters”? • Yes, because the sensitive parameters: • are obviously important for prediction • No, because model parameters: • are model-specific • are correlated with each other, which we do not measure • cannot really be measured at all • So, it may be better to measure output variables, because they: • are what we are interested in • are better defined, in models and measurements • help determine parameter correlations if used in Bayesian calibration

  28. The value of NPP-data Wood C NPP Height Skogaby, not calibrated (m ± σ) Skogaby, calibrated on NPP-data only (m ± σ)

  29. Data of height growth: poor quality Wood C NPP Height Skogaby, not calibrated (m ± σ) Skogaby, calibrated on poor height-data only (m ± σ)

  30. Data of height growth: high quality Skogaby, not calibrated (m ± σ) Skogaby, calibrated on poor height-data only (m ± σ) Skogaby, calibrated on good height-data only (m ± σ) Wood C NPP Height

  31. Model application to forest growth in Rajec (Czechia) Skogaby Rajec (CZ): Planted: 1903, (6000 trees ha-1) Tree data: Wood-C, Height Rajec

  32. Rajec (CZ): Uncalibrated and calibrated on Skogaby (S) Wood C NPP Height Rajec, not calibrated (m ± σ) Rajec, Skogaby-calibrated (m ± σ)

  33. Rajec (CZ): Uncalibrated and calibrated on Skogaby (S) Wood C NPP Height Rajec, not calibrated (m ± σ) Rajec, Skogaby-calibrated (m ± σ)

  34. Rajec (CZ): further calibration on Rajec-data Rajec, not calibrated (m ± σ) Rajec, Skogaby-calibrated (m ± σ) Rajec, Skogaby- and Rajec-calibrated (m ± σ) Wood C NPP Height

  35. Summary of procedure “Error function” e.g. N(0, σ) MCMC Samples of f(p) (104 – 105) Samples of p (104 – 105) P(f(p)|D) PCC Posterior P(p|D) Prior P(p) Model f Data D ± σ Uncertainty analysis of model output Sensitivity analysis of model parameters Calibrated parameters, with covariances

  36. Model selection Imperfect understanding Imperfect input data Imperfect output data Height Environmental scenarios NPP Initial values Soil C Parameters Model

  37. Model selection Mean(log(L)) = -6.4 Mean(log(L)) = -8.7 Bayesian calibration: P(p|D)P(p) L(f(p)|D) Bayesian model selection: P(M|D)P(M) L(fM(pM)|D) Expolinear (4 parameters) BASFOR (39 parameters) Max(log(L)) = -5.7 Max(log(L)) = -6.9 “By-products” of MCMC

  38. Conclusions (1) • Reducing parameter uncertainty: • Reduces predictive uncertainty • Reveals magnitude of errors in model structure • Benefits little from parameter measurement: • model parameter  what you measure • parameter covariances are more important than variances • Requires calibration on measured outputs (eddy fluxes, C-inventories, height-measurement, ...) • Calibration: • Requires precise data • “Central” output variables are more useful than “peripheral” (NPP/gas exchange > height)

  39. Conclusions (2) • MCMC-calibration • Works on all models • Conceptually simple, grounded in probability theory • Algorithmically simple (Metropolis) • Not fast (104 - 105 model runs) • Produces: • Sample from parameter pdf (means, variances and covariances), with likelihoods • Corresponding sample of model outputs (UA) • Partial correlation analysis of outputs vs parameters (SA) • Model selection • Can use the same probabilistic approach as calibration • Can use mean model log-likelihoods produced by MCMC

  40. Acknowledgements • Göran Ågren (S) & Emil Klimo (CZ) • Peter Levy, Renate Wendler, Peter Millard (UK) • Ron Smith (UK)

  41. Appendix 1: Calculation times per MCMC-step

  42. MCMC: to do • Burn-in • Multiple chains • Mixing criteria (from characteristics of individual chains and from comparison of multiple chains) • Better (dynamic? f(prior?)) choice of step-length for generating candidate next points in p-space • Other speeding-up tricks?

More Related