Topical Workshop on Electronics for Particle Physics Paris, September 23rd, 2009 - PowerPoint PPT Presentation

onan
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
Topical Workshop on Electronics for Particle Physics Paris, September 23rd, 2009 PowerPoint Presentation
Download Presentation
Topical Workshop on Electronics for Particle Physics Paris, September 23rd, 2009

play fullscreen
1 / 27
Download Presentation
Topical Workshop on Electronics for Particle Physics Paris, September 23rd, 2009
94 Views
Download Presentation

Topical Workshop on Electronics for Particle Physics Paris, September 23rd, 2009

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Experimental Studies Towards a DC-DC Conversion Powering Scheme for the CMS Silicon Strip Tracker at SLHC Lutz Feld, Rüdiger Jussen, Waclaw Karpinski,Katja Klein, Jennifer Merz, Jan Sammet 1. Physikalisches Institut B RWTH Aachen University Topical Workshop on Electronics for Particle Physics Paris, September 23rd, 2009

  2. Outline • SLHC and the CMS tracker upgrade • Buck converter development at RWTH Aachen • Effect on material budget • System tests • Efficiency • EMC • Filtering • LDO regulators • -filters • Noise susceptibility • Integration into the CMS tracker • Summary DC-DC Conversion for CMS Tracker Upgrade

  3. SLHC & the CMS Tracker Upgrade Severe consequences for CMS and its Silicon Strip Tracker, e.g.: • Higher granularity needed  strip length decreases from 10-20cm to 2.5-5cm • Track information must be used in the level-1 trigger to preserve 100kHz trigger rate  pixellated layers with complex, fast digital electronics and high power consumption • Smaller feature size FE-electronics: 250nm  130nm or below  saves power, but leads to larger currents for same power consumption • Preserve (improve?) detector quality  decrease material budget inside tracker (cables!) • Services – including power cables – to the tracker cannot be exchanged A new, different Tracker will be built. Its power consumption might be high. DC-DC Conversion for CMS Tracker Upgrade

  4. DC-DC Conversion for the Tracker Upgrade A novel powering scheme will be needed  review process to narrow down options. The CMS tracker has chosen DC-DC conversion as baseline solution, and maintains Serial Powering as back-up. Reverting to back-up must remain possible. DC-DC Converter DC-DC Converter Conversion ratio r = 2 - 10 r = Vin/Vout = Iout/Iin Vin (e.g. 10V) Cable loss red. by 1/r2 Vout (e.g. 1.2V) “Buck converter“: few components, efficiency ~ 80%, high currents, high r Ferrites saturate for B > ~2T  air-core inductor needed bulky Switching noise radiates noise • HV-tolerant • semi-conductor • technology needed • radiation-hardness • (22cm & 3000fb-1: • Fluence ~ 1015/cm2 • Dose ~ 1MGy) Efficiency Material budget Space constraints DC-DC Conversion for CMS Tracker Upgrade

  5. Aachen DC-DC Converters Idea of Aachen R&D: develop buck converters with commercial non-radiation-hard chips; optimize for low mass, low space, low noise; and study in system test PCB: 2 copper layers a 35m FR4, 200µm V = 2.3cm2 x 10mm m = 1.0g 12mm Chip: EnpirionEQ5382D Vin = 2.4-5.5V(rec.)/7.0V(max.) Iout 0.8A fs 4MHz 19mm Air-core inductor: Custom-made toroid,   6mm L = 200nH or 600nH Input/output filters Snubber to reduce ringing DC-DC Conversion for CMS Tracker Upgrade

  6. Aachen DC-DC Converter Variants Three different filter capacitors: Two different air-core toroids: custom-made, small, low mass AC2-StandardC: Standard caps; in: 22F || 10F; out: 22F || 10F 19mm 4mm “Tiny Toroid“ L = 200nH RDC = 40-50m m = 0.2g AC2-ReverseC: 3 caps a 10F in reverse geometry for low ESL “Mini Toroid“ L = 600nH RDC = 80-100m m = 0.3g 6mm 6mm 7mm 25mm AC2-IDC: 2 Inter-Digitated Capswith 8 legs for low ESL (<100pH) in:1F, out: 2.2F 27mm DC-DC Conversion for CMS Tracker Upgrade

  7. Effect on Material Budget (MB) Motivation for new powering schemes is to save material inside the tracker  contribution of converter should be as small as possible MB of all End Cap - silicon strip modules - DC-DC converters • Simulation with CMS software based on GEANT4 (CMSSW) • 1 AC2-StandardC converter per Tracker End Cap module, located on FE-hybrid • Current tracker layout • X0 = radiation length • x/X0 = fraction of radiation length • Pseudo rapidity  = ln(tan(/2))  = 0  = 2.5 Beam pipe Contribution from DC-DC converters ~10% of current strip modules DC-DC Conversion for CMS Tracker Upgrade

  8. Effect on Material Budget Lower currents with DC-DC converters  saves copper in cables & motherboards Electronics & cables Old layout DC-DC conv. - 30.9% Assumptions: conversion ratio = 8 80% converter efficiency Cables: calculate new conductor cross-section from todays‘ maximal allowed voltage drop between power supply and silicon module Motherboards: allow for 3% of module power to be lost in motherboards; calculate width of traces for each module Within the applied model, we can save 30.9% in “Electronics & cables“and 8.0% for total Tracker End Caps! Total savings for Serial Powering similar: 7.5%. DC-DC Conversion for CMS Tracker Upgrade

  9. System Test Set-Up • SLHC readout chips and module prototypes not available before 2010/1011 • We believe a lot can be learned from current CMS tracker hardware TEC petal • APV25 readout chip: • 0.25 µm CMOS • 128 channels • - analogue readout • - per channel: pre-amp., CR-RC shaper, pipeline • -  = 50ns • - 1.25V & 2.50V supply • - I250 = 0.12A, I125 = 0.06A Ring 6 modules 6.4 6.3 6.2 6.1 Motherboard • Two DC-DC converters per module • Integrated via additional adapter • Vin from external power supply DC-DC Conversion for CMS Tracker Upgrade

  10. Silicon Strip Module Noise Zoom onto edge channels --- Conventional powering --- DC-DC converter (AC1, 2008) ---DC-DC converter (AC2, 2009) --- Conventional powering --- DC-DC converter (AC1, 2008) --- Conventional powering --- DC-DC converter (AC1, 2008) --- Conventional powering --- DC-DC converter (AC1, 2008) ---DC-DC converter (AC2, 2009) Conventional powering Conventional powering { 1 APV = 128 strips • Raw noise: RMS of fluctuation around pedestal value • Edge channels are particularly sensitive (explanation in back-up slides) • Large increase with previous generation of boards (AC1), in particular on edge strips; both conductive (ripple) and radiative (inductor) contributions (TWEPP08) DC-DC Conversion for CMS Tracker Upgrade

  11. Noise of Aachen Buck Converters --- No converter ---AC1 with AC2 mounting --- AC2-StandardC --- AC2-ReverseC --- AC2-IDC Sensitive variable chosen for all following comparisons:  No converter Mini Toroid, 600nH Tiny Toroid, 200nH Diff. PCB length compensated with addit. connectors • Lower noise than with AC1 boards • Mini Toroid shows lower noise and 5-30% higher efficiency (IL = VL  ton / L) • IDCs offer good filtering performance Long-term reproducibility AC1 AC2 mounting AC2-Stand.C AC2-Rev.C AC2-IDC DC-DC Conversion for CMS Tracker Upgrade

  12. Converter Noise Spectra (EMC Test) Load LISN = Line ImpedanceStabilization Network SpectrumAnalyzer AC2-Stand.C Tiny Toroid DM output 5.5Vin, 1.25Vout AC2-IDC Tiny Toroid DM output 5.5Vin, 1.25Vout DC-DC Conversion for CMS Tracker Upgrade

  13. Converter Noise Spectra (EMC Test) Differential Mode Common Mode Quadratic sum of noise peaks [dBµA]  No converter Tiny toroid IDC StandardC ReverseC • AC2-IDC board has lowest DM noise  consistent with system test results • Current CMS strip modules are sensitive mostly to DM noise DC-DC Conversion for CMS Tracker Upgrade

  14. Efficiency PS Load AC2-StandardC, Vout = 1.3V PC with LabVIEW • Efficiency is 75-85% for Vout = 1.3V and Mini Toroid • For smaller conversion ratio (Vout = 2.5V), efficiency is up to 15% higher • Difference between cap. types < 1% DC-DC Conversion for CMS Tracker Upgrade

  15. Filters: LDO and -filter LDO regulators can act as effective DM filters Passive -filters (much simpler) LDO-StandardC board with Linear Technology LDO LTC3026 L1 = 2.5nH (RDC ≤ 5m) C1 = C2 All converter boards can be combined with all filters • Filter 1: • C = 22µF fcut 1MHz • Filter 2: • C = 2.2µF fcut  3MHz DC-DC Conversion for CMS Tracker Upgrade

  16. Filters: LDO and -filter  No converter  AC2-StandardC AC2-ReverseC AC2-IDC Quadratic sum of noise peaks [dBA] Differential Mode Common Mode None Dummy (not equipped) LDO -filter 1 Type of filter • Passive -filters are as effective as LDO regulator • Efficiency loss with -filter < 1%; with LDO up to 7% -filter is preferred DC-DC Conversion for CMS Tracker Upgrade

  17. Noise vs. Conversion Ratio • No converter • AC1 (2008) •  AC2-StandardC with Mini Toroid • AC2-StandardC with Mini Toroid + filter 2 • Noise of AC1 converter increased with conversion ratio r = Vin / Vout • AC2-StandardC with Mini Toroid and -filter exhibits no significant additional noise for all accessible conversion ratios DC-DC Conversion for CMS Tracker Upgrade

  18. Noise Susceptibility • Goal: identify particularly critical bandwidth(s) for converter switching frequency • Bulk current injection (BCI) method used • A noise current of 70dBA (Ieff = 3.16mA) is injected into the power lines • Differential Mode (DM) and Common Mode (CM) on 2.5V and 1.25V CMS Module DC-DC Conversion for CMS Tracker Upgrade

  19. Noise Susceptibility of Current Strip Modules Noisedistributions Step width: 0.1MHz for 100kHz-10MHz,1.0MHz for 10MHz-30MHz,2.5MHz for 30MHz-100MHz Edge stripnoise Plot vs. f • Peak at 6-8MHz, well above future switching frequency (3.2MHz exp. from shaping time) • Higher susceptibility for DM and 1.25V = pre-amplifier reference voltage • Set-up will be valuable to characterize future module prototypes DC-DC Conversion for CMS Tracker Upgrade

  20. Implementation into CMS Tracker Pixels at Phase-1: • Pixel detector will grow: 3  4 barrel layers, 2 x 2  2 x 3 forward disks • More read-out chips per cable and PS  massive upgrade of PS would be needed • Buck converters with conv. ratio ~ 2 could be combined with light PS upgrade • Integration onto pixel supply tube ( 4)  material budget, size, radiation of coil ~ uncritical • On-chip linear regulators  some ripple tolerable Outer Tracker at Phase-2: • Layout under study, but both for tracking & trigger layers DC-DC conv. are foreseen • Trigger layers might need several Amps per module and high conversion ratio • Silicon modules optimized for low mass  tight space constraints • Separate power boards, integrated onto module periphery or support structure We will develop/test boards, based on ASICs of CERN group, for both projects. DC-DC Conversion for CMS Tracker Upgrade

  21. Summary • Buck converters based on commercial non-radiation-hard chips have been developed that add very little noise into the current tracker system • Small, low-mass 600nH air-core toroids with low RDC have been fabricated • -filters reduce the noise to the level of conventional powering with < 1% efficiency loss, and are preferred over LDOs • The Material Budget corresponds to 10% of the MB of a current strip module • With buck converters close to the modules (conv. ratio = 8, efficiency = 80%), ~ 8% of the total TEC material budget could be saved • The CMS tracker plans to implement buck converters in the pixel system at phase-1 and in the outer tracker at phase-2 • RWTH Aachen group will now move on to study the integration of custom radiation-hard converters DC-DC Conversion for CMS Tracker Upgrade

  22. Back-up Slides DC-DC Conversion for CMS Tracker Upgrade

  23. Comparison: MB for Serial Powering • Implementation of SP (inspired by ATLAS talks): • All 17-28 modules of Tracker End Cap substructure (petal) powered in series • Additional components per module: chip (~SPI), Kapton, bypass transistor, 6 capacitors and 3 resistors/chip for AC-coupling • Power loss in motherboards  3% • Cable cross-sections calculated as before  Similar savings for Serial Powering and DC-DC conversion DC-DC Conversion for CMS Tracker Upgrade

  24. The APV25 f = 1/(250nsec) = 3.2MHz DC-DC Conversion for CMS Tracker Upgrade

  25. On-Chip Common Mode Subtraction • 128 APV inverter stages powered from 2.5V via common resistor (historical reasons)  mean common mode (CM) of all 128 channels is effectively subtracted on-chip • Works fine for regular channels which see mean CM • CM appears on open channels which see less CM than regular channels • CM imperfectly subtracted for channels with increased noise, i.e. edge channels pre-amplifier inverter V250 R (external) V250 V125 vCM strip vIN+vCM vOUT = -vIN VSS Node is common to all 128 inverters in chip DC-DC Conversion for CMS Tracker Upgrade

  26. Module Edge Strips APV25 pre-amplifier V250 V125 strip bias ring VSS=GND [Mark Raymond] • Edge strips are capacitively coupled to bias ring • Bias ring is AC coupled to ground • Pre-amplifier is referenced to 1.25V • If V125 is noisy, pre-amp reference voltage fluctuates against input • This leads to increased noise on edge channels [Hybrid] DC-DC Conversion for CMS Tracker Upgrade

  27. -Filters vs. LDO: What about Efficiency? Efficiency with LDO (filter) / efficiency without LDO (filter) was measured for all board types, filters and Vout = 1.25V and 2.50V;e.g. AC2_StandardC, 1.25V: LDO filter -filter 2 • Losses of up to 7% observed with LDO regulator (50mV dropout) • Losses with our -filters stay below 1% • -filter clearly preferred DC-DC Conversion for CMS Tracker Upgrade