Scintillation Detectors - PowerPoint PPT Presentation

olympe
scintillation detectors n.
Skip this Video
Loading SlideShow in 5 Seconds..
Scintillation Detectors PowerPoint Presentation
Download Presentation
Scintillation Detectors

play fullscreen
1 / 25
Download Presentation
Scintillation Detectors
161 Views
Download Presentation

Scintillation Detectors

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Scintillation Detectors John Neuhaus - University of Iowa Fall 2010

  2. Basics • Ionizing radiation excites matter, but doesn’t ionize • De-excitation by heat, phosphorescence or fluorescence • Fluorescence (ns timescale) in response to radiation is called scintillation John Neuhaus - University of Iowa Fall 2010

  3. Details • Light created proportional to energy deposited • Fluorescence is fast! • Pulse shape discrimination possible • Basic two-part exponential decay John Neuhaus - University of Iowa Fall 2010

  4. Types of Scintillators • Organic Crystals • Organic Liquids • Plastics • Inorganic Crystals • Gaseous Scintillators • Glasses John Neuhaus - University of Iowa Fall 2010

  5. Organic Crystals • Aromatic hydrocarbons, typically containing benzene rings • Sometimes pure crystals (anthracene, stilbene) • Decay time of few ns • Light from free valence electrons (πorbitals) John Neuhaus - University of Iowa Fall 2010

  6. Inorganic Crystals • NaI(Tl), BGO, LYSO, PbWO4 • High light, slower response (250 ns for NaI), high density (~7 g/ml for BGO, LYSO) • Usually hygroscopic, expensive • Make good gamma detectors John Neuhaus - University of Iowa Fall 2010

  7. Organic Liquids • Liquid solution of organic scintillators in organic solvent • P-Terphenyl, PPO, etc. in xylene, toluene, cyclohexane, etc. • Easily doped (e.g. with 10B for neutron detection) John Neuhaus - University of Iowa Fall 2010

  8. Plastics • Polymerizable solvent, like polystyrene or polyvinyltoluene • High light, fast response, easily machineable and cheap • Sensitive to body acids and organic solvents • In fiber form -> wavelength shifting John Neuhaus - University of Iowa Fall 2010

  9. Wavelength Shifting • Solvents liquid and solid fluoresce, typically in UV • Primary fluor (pTP, etc.) absorbs UV and re-emits at longer wavelength • Secondary (3HF, POPOP) shifts further and inhibits self-absorption John Neuhaus - University of Iowa Fall 2010

  10. John Neuhaus - University of Iowa Fall 2010

  11. John Neuhaus - University of Iowa Fall 2010

  12. Radiation Damage Mechanisms • Damage of dopants • Reduction in transmittance of base (“hidden damage”) BC505 Sample Undoped base John Neuhaus - University of Iowa Fall 2010

  13. Methods of Improving Radiation Hardness • Rad-hard dyes • Large Stokes’ shift dyes to move past damaged region • Rad-hard bases • Combos (e.g. 3HF and PDMS) John Neuhaus - University of Iowa Fall 2010

  14. Applications – Triggers and Vetos • Halo veto rejects poorly collimated beam John Neuhaus - University of Iowa Fall 2010

  15. Applications – Cont’d • Beam size trigger, selectable beam size John Neuhaus - University of Iowa Fall 2010

  16. Applications – Cont’d • Muon veto rejects beam events that contain muons Experiment High-z absorber John Neuhaus - University of Iowa Fall 2010

  17. Applications – Cont’d • Hodoscope, “path viewer” • Track charged particles • Onel, et al. 1998 John Neuhaus - University of Iowa Fall 2010

  18. Test Beam • Well characterized beam for detector R&D • Single elements (e.g. scintillator plate) • Full calorimeters • FNAL (Mtest) and CERN (H2) John Neuhaus - University of Iowa Fall 2010

  19. FNAL MTest John Neuhaus - University of Iowa Fall 2010

  20. FNAL MTest John Neuhaus - University of Iowa Fall 2010

  21. MTest Details • Low Energy electrons (1-2 GeV) • High Energy Protons (120 GeV) • Pions (1-66 GeV) • Muons (1-120 GeV) • Multiple spill modes • One 4s spill/min • Two 1s spills/min • Several ms spills/min John Neuhaus - University of Iowa Fall 2010

  22. Beam Composition John Neuhaus - University of Iowa Fall 2010

  23. Calorimeter Experiments Iowa Quartz Plate Calorimeter 2006 at FNAL, p-Terphenyl deposited quartz plates John Neuhaus - University of Iowa Fall 2010

  24. Calorimeter Exp Cont’d QPCAL at CERN H2 Facility John Neuhaus - University of Iowa Fall 2010

  25. Data from H2 John Neuhaus - University of Iowa Fall 2010