sangaku problemi iz japanskih hramova n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
SANGAKU PROBLEMI IZ JAPANSKIH HRAMOVA PowerPoint Presentation
Download Presentation
SANGAKU PROBLEMI IZ JAPANSKIH HRAMOVA

Loading in 2 Seconds...

play fullscreen
1 / 32
olympe

SANGAKU PROBLEMI IZ JAPANSKIH HRAMOVA - PowerPoint PPT Presentation

2 Views
Download Presentation
SANGAKU PROBLEMI IZ JAPANSKIH HRAMOVA
An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku SANGAKU PROBLEMI IZ JAPANSKIH HRAMOVA Danijela Mišević Nada Todorovska M – I doc.dr.sc. Franka M.Brückler

  2. SANGAKU - „matematička ploča“ • obojene ploče ponuđene u shinto svetištima i u budističkim hramovima u Japanu; prikazuju matematičke probleme • bile su namijenjene za kuću (kao zahvala duhu - čuvaru kuće), ili su stavljani u hramove kao izazov drugima s porukom:“Riješi ovo ako možeš!“

  3. najviše sadržavaju običnu Euklidsku geometriju • problemi su različiti od onih koje nalazimo u današnjoj nastavi • neke od problema su prilično jednostavni i mogu ih riješiti i studenti nižih godina • drugi su gotovo nemogući za riješiti, a moderni geometri riješavaju ih pomoću poboljšanih metoda • najprije je tekst ploča pisan u Kambunu, kineskom pismu namijenjenom Japancima

  4. Primjeri sangaku ploča KYOTO TOKYO

  5. YAMAGATA OSAKA HYOGO

  6. IWATE KANAGAWA

  7. FUKOKA NAGASAKI YAMANASI

  8. Kronologija 1338. Započinje mračno doba znanosti u Japanu 1573. Završetak Ashikaga Shogunata 1600. Tokugawa Ieyasu dobiva bitku na Sekigahari porazivši Hideyorija 1603.Početak perioda Edo u Japanu pod Shogunatom Tokugawe 1615.Ieyasu okupira dvorac Osaku; učinkovito se riješava cijele političke opozicije 1627.Koyo Yoshido piše Jinko-ki (“Mali i veliki brojevi”), djelo koje postaje sinonim za aritmetiku u cijelom Japanu

  9. 1633.Shogun Lemitru službeno zabranjuje putovanje izvan Japana. Trgovina dozvoljena samo s Kinom i Nizozemskom 1639.Početak perioda Sakoku (“nacionalna izoliranost”) u Japanu 1642.Rođenje Kowa Seki-ja, najvećeg japanskog matematičara 17.st. 1683.Najstariji izvještaji o sangaku pločama u Tochigi Prefecturi 1854.Završetak perioda Sakoku (M.C.Perry) 1867.Službeni kraj perioda Edo u Japanu

  10. Povijest sangaku ploča • najraniji sangaku datira nekoliko godina prije početka japanskog Edo perioda • Japan izoliran – pristup svim oblicima kulture bio je onemogućen – razvoj “japanskih” matematičara • kružnice i elipse imaju veliku ulogu • tijekom 200 godina Sakoku-a bilo je napravljeno oko 25 sangaku-a godišnje

  11. Wasan vs. Yosan • Wasan – japanska dostignuća u matematici (poznat i razvijen sustav eksponencijalnih jednadžbi, sličan Arhimedovom) • Yosan – proces stvaranja novih rukopisa sa zapadnjačkom notacijom, pisanih u Kambunu (19. st.) • nakon otvaranja Japana nova vlada napustila je učenja starih matematičara u prilog yosanu • neki su matematičari nastavili vješati ploče do danas (20. i 21. st. - plagijati)

  12. UMJETNIČKA DJELA • Chou-pei Suan-ching (prvo poznato djelo); primjer Pitagorinog teorema, dijagram sličnosti kod njegovog dokaza • Chiu-chang Suanshu (najpoznatije japansko matematičko djelo); opisuje metode za nalaženje površina trokuta, četverokuta, krugova i ostalih likova

  13. Unatoč utjecaja kineske nauke, matematika nije ostavila korijene u Japanu (tijekom šogunata Asikaga (1338.- 1573.) teško se moglo pronaći nekoga u Japanu tko bi znao dijeliti ) • Kambei Mori (1600.); aritmetičko računanje na SOROBAN-u, inačici ABACUSA • Koyo Yoshida – “Jinko-ki” (“Mali i veliki brojevi”) • razvoj metoda za rješavanje jednadžbi višeg stupnja (važno za geometriju u hramovima)

  14. Seki – princip kruga (odnosi se na razvoj sangaku ploča) ili ENRI • ENRI: slična metodi ekshaustije razvijenoj još u drevnoj Grčkoj za izračun površine kruga • predstavlja primitivnu formu integralnih jednadžbi što je kasnije bilo prošireno na druge likove, uključujući sfere i elipse

  15. „TKO JE OSMISLIO SANGAKU?“ • jesu li tako lijepo uređene ploče djelo profesionalnih matematičara ili amatera? • mnogi od problema su elementarni i rješivi u svega nekoliko redova, pa se može pretpostaviti da su ih stvarali laici • iz informacija kojima se do sada raspolaže zaključuje se da su ploče bile djelo prvenstveno profesionalnih matematičara i njihovih učenika (?!) • najbolji odgovor na postavljeno pitanje o tome, tko je stvorio sangaku, bio bi SVI!!!

  16. Tipični problemi TOKYO 1788. Traži se radijus n-tog najvećeg plavog kruga pod uvjetom da je r radijus zelenog kruga. Crveni krugovi su jednaki (radijus je r/2). Originalno rješenje ovog problema je japanska inačica Descartovog teorema o krugu.

  17. GUMMA 1824. Narančasti i plavi krugovi dodiruju se u jednoj točki i leže na istom pravcu. Mali crveni krug dira oba veća kruga i također leži na tom pravcu. Koji je odnos među radijusima tih krugova?

  18. Problem:

  19. Dokažimo: Problem: Uz činjenicu: AC+CB=AB

  20. MYAGI 1912. U točki P na elipsi nacrtaj normalu PQ tako da ona siječe drugu stranu elipse. Nađi najmanju vrijednost od PQ. Rješenje: manja os elipse

  21. MYAGI 1913. Narančasti kvadrati su nacrtani kao na slici. Koja je relacija radijusa među trima krugovima nacrtanih kao na slici? Rješenje: r1 : r2 = r2 : r3

  22. GUMMA 1803. Baza jednakokračnog trokuta leži na promjeru zelenog kruga. Taj promjer također presijeca crveni krug, što je postignuto tako da samo dira unutrašnjost zelenog kruga i vrh trokuta. Plavi krug je smješten tako da dira crveni krug i trokut. Dužina spaja središte plavog kruga i sjecište crvenog kruga i trokuta. Pokaži da je ova dužina okomita danom promjeru zelenog kruga.

  23. GUMMA 1874. Veliki plavi krug leži unutar kvadrata. 4 manja narančasta kruga, od kojih je svaki sa različitim radijusom, dira plavi krug, kao i dvije susjedne stranice kvadrata. Kakva je relacija među radijusima četiriju malih krugova i duljine stranice kvadrata?

  24. 1825. Koristi se metoda ENRI. Valjak presijeca sferu tako da je vanjski dio valjka tangenta odnosno dira unutrašnjost sfere. Koja je površina dijela valjka koji sadrži unutrašnjost sfere

  25. KAMAGAWA 1822. Dvije crvene sfere međusobno se diraju i unutar su velike zelene sfere. Niz manjih, plavih sfera različite veličine čini “vrat” između crvenih sfera. Svaka od plavih sfera u “ogrlici” dira najbliže susjede, a svi diraju obje crvene sfere i zelenu sferu. Koliko plavih sfera mora biti? Kako se međusobno odnose radijusi plavih sfera?

  26. 1798. Neka je velika sfera okružena s 30 malih sfera jednake veličine, od kojih svaka dira svoje 4 susjedne sfere, ali i veliku sferu. Koji je odnos radijusa velike sfere u odnosu na male sfere?

  27. U duhu Wasana: Neka je AB = a, AF = x, OF = r Problem 1 Tada za ΔBFO vrijedi: a za ΔAFO vrijedi sljedeće: Oduzimanjem dobijemo: ili što znači da je stranica EF kvadrata MCEF, gdje je M polovište dužine AB,promjer kruga. Konstrukcija je sada vrlo jednostavna.

  28. Neka je R radijus kruga sa središtem u E, a r nepoznati radijus traženog kruga. Problem 2 Za trokut ΔADE vrijedi: ili Dok za ΔABC vrijedi: ili Budući je AD = BC, dobivamo sljedeće: Ili R = 2r. Središte kruga (A) nalazi se na presjeku krugova radijusa 3R/2 sa središtima u E i C.

  29. JEDAN ZANIMLJIVI APPLET

  30. LITERATURA http://www.wasan.jp/english/ http://www.sangaku.info/ http://www.princeton.edu/main/news/archive/S15/04/04O77/index.xml http://mathworld.wolfram.com/SangakuProblem.html http://matcmadison.edu/is/as/math/kmirus/Reference/SanGaku.html http://www.loyola.edu/maru/sangaku.html http://lasi.lynchburg.edu/peterson_km/public/old/projects/problems.htm http://www.cut-the-knot.org/Curriculum/Geometry/PythagorasWithVectenInJapan.shtml http://www.cut-the-knot.org/pythagoras/Sangaku.shtml