1 / 14

Integer Linear Programming (ILP)

Integer Linear Programming (ILP). Types of ILP Models. ILP: A linear program in which some or all variables are restricted to integer values. Types: All-integer LP or a pure ILP Mixed-Integer LP 0-1 integer LP. Illustration of All-Integer LP.

ojal
Download Presentation

Integer Linear Programming (ILP)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Integer Linear Programming (ILP)

  2. Types of ILP Models ILP: A linear program in which some or all variables are restricted to integer values. Types: • All-integer LP or a pure ILP • Mixed-Integer LP • 0-1 integer LP

  3. Illustration of All-Integer LP Sweeny: Eastborne Reality is considering investing in townhouses (T) and apartments(A). Determine the number of T’s and A’s to be purchased. (Integers) Funds available: $2 million. Cost: $282k per T and $400k per A Numbers available: 5 T’s and any number of A’s. Management time available: 140 h/mo Time needed: 4 hrs/mo for T and 40 h/mo for A. Contribution: $10k for T and $15k for A.

  4. Sweeny Eastborne: ILP Model Maximise 10T + 15A Subject to: 282T + 400A ≤ 2000 4T + 40A ≤ 140 T ≤ 5 T, A ≥ 0 and integer

  5. Sweeny Eastborne Relaxed LP: Rounded Solution If we relax the integer restriction, the optimum solution is T=2.48, A = 3.25, Z = 73.57 This is not acceptable because townhouses and apartments cannot be purchased in fractions! Rounding down gives integer solution with T = 2, A = 3 and Z = 65 Such rounding down may sometimes yield an optimum solution, but one cannot be sure!

  6. Sweeny Eastborne ILPOptimal Integer Solution The optimal solution is T = 4, A = 2, Z = 70 and not the rounded-down solution which gives Z = 65.

  7. ILP Algorithms The ILP algorithms are based on exploiting the tremendous computational success of LP. The strategy involves three steps: • Relax the ILP: Remove integer restrictions; replace any binary variable y with continuous range 0  y  1. • Solve the relaxed LP as a regular LP. • Starting with the relaxed optimum, add constraints that iteratively modify the solution space to satisfy the integer requirements.

  8. B&B and Cutting Plane Methods The two commonly used methods are: • Branch and bound method • Cutting Plane Method Neither method is consistently effective; but B&B is far more successful.

  9. Branch-and-Bound (B&B) • Developed in 1960 by A Land and G Doig • Relax the integer restrictions in the problem and solve it as a regular LP. Let’s call this LP0 (to imply node-zero LP) • Test if integer requirements are met. Else branch to get sub-problems LP1 and LP2.

  10. Branching • If LP0 (in general LPi) fails to yield integer solution, branch on any variable that fails to meet this requirement. The process of branching is illustrated below. If LPi yields x1 = 3.5 and x1 is taken as the branching variable, we get two sub-problems, LPi+1 = LPi & (x1 3) and LPi+2 = LPi & (x1 4).

  11. Bounding / Fathoming • Select LP1 (in general LPi)and solve. Three conditions arise. • Infeasible solution, declare fathomed (no further investigation of LPi). • Integer solution. If it is superior to the current best solution update the current best. Declare fathomed. • Non-integer solution. If it is inferior to the current best, declare fathomed. Else branch again.

  12. Best Bound • In maximisation, the solution to a sub-problem is superior if it raises the current lower bound. • In minimisation, the solution to a sub-problem is superior if it lowers the current upper bound. • When all sub-problems have been fathomed, stop. The current bound is the best bound.

  13. B&B Tree for Eastborne LP0 T = 2.48, A = 3.25, Z = 73.57 Non-integer, non-inferior to current best, branch on T LP1 = LP0 & T ≤ 2 T = 2, A = 3.3, Z = 69.5 Non-integer, can’t give better solution than LP5, fathomed LP2 = LP0 & T ≥ 3 T = 3, A = 2.89 Z = 73.28 Non-integer, non-inferior to current best, branch on A LP3 = LP0 & T ≥ 3 & A ≤ 2 T = 4.26, A = 2, Z = 72.55 Non-integer, non-inferior to current best, branch on T LP4 = LP0 & T ≥ 3 & A ≥ 3 Infeasible, fathomed LP5 = LP0 & T  [3,4] & A ≤ 2 T = 4, A = 2, Z = 70 Integer, Lower (best) bound LP6 = LP0 & T ≥ 5 & A ≤ 2 T = 5, A = 1.48, Z = 72.13 Can’t give better solution than LP5, fathomed Note: Z is a multiple of 5 and hence only Z ≥ 75 can be better than z = 70

  14. LP0 T = 2.48, A = 3.25, Z = 73.57 Non-integer, non-inferior to current best, branch on T LP1 = LP0 & T ≤ 2 T = 2, A = 3.3, Z = 69.5 Non-integer, can’t give better solution than LP5, fathomed LP2 = LP0 & T ≥ 3 T = 3, A = 2.89 Z = 73.28 Non-integer, non-inferior to current best, branch on A LP3 = LP0 & T ≥ 3 & A ≤ 2 T = 4.26, A = 2, Z = 72.55 Non-integer, non-inferior to current best, branch on T LP4 = LP0 & T ≥ 3 & A ≥ 3 Infeasible, fathomed LP5 = LP0 & T  [3,4] & A ≤ 2 T = 4, A = 2, Z = 70 Integer, Lower (best) bound LP6 = LP0 & T ≥ 5 & A ≤ 2 T = 5, A = 1.48, Z = 72.13 Can’t give better solution than LP5, fathomed

More Related