1 / 112

DNA: Estructura , replicacion , transcripcion , procesamiento y mutaciones

DNA: Estructura , replicacion , transcripcion , procesamiento y mutaciones. José A. Cardé- Serrano, PhD Universidad Adventista de las Antillas Biol 223 - Genética Agosto 2011. Genome Size and Developmental Complexity. Chromatin Composition. Histone Proteins.

obelia
Download Presentation

DNA: Estructura , replicacion , transcripcion , procesamiento y mutaciones

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DNA: Estructura, replicacion, transcripcion, procesamiento y mutaciones José A. Cardé- Serrano, PhDUniversidad Adventista de las Antillas Biol 223 - Genética Agosto 2011

  2. Genome Size and Developmental Complexity

  3. Chromatin Composition

  4. Histone Proteins • Structural role in chromatin • Present in amounts equivalent to amounts of DNA • Major histone types: H1, H2a, H2b, H3, and H4 • Basic proteins • Arginine and Lysine are Abundant • Highly conserved proteins

  5. Levels of DNA Packaging • 2-nm double-stranded DNA molecule • 11-nm nucleosomes • 30 nm chromatin fiber • Organization around a central scaffold

  6. Nucleosomes

  7. The 30 nm Fiber

  8. DNA Around a Scaffold of Nonhistone Proteins

  9. Human Metaphase Chromosomes

  10. Centromeres • Constricted region of the chromosome • Necessary for proper segregation of chromosomes in mitosis and meiosis

  11. Telomeres • Functions of telomeres • Protect the ends of linear DNA molecules from deoxyribonucleases • Prevent fusion of chromosomes ends or terminals • Facilitate complete replication of the ends of linear DNA molecules • Most telomeres contain repetitive sequences and a distinct structure.

  12. Telomere Structure

  13. Introducción • Replicación – procesos por el cual la célula genera una copia de su material genético usando como molde una previa • Iniciación  extensión  terminación • 30,000 bpm vs 3,000 bpm • 1 error / billón • Implicaciones en los gemelos?

  14. DNA Replication is Semiconservative • Each strand serves as a template • Complementary base pairing determines the sequence of the new strand • Each strand of the parental helix is conserved in a hybrid new molecule • Problema: Pregunta? • Como se replicará el DNA?

  15. Possible Modes of DNA Replication 3 Hipótesis posibles

  16. The Meselson-Stahl Experiment:DNA Replication in E. coli is Semiconservative

  17. The Origin of Replication in E. coli

  18. Visualization of Replication in E. coli

  19. Replication in E. coli

  20. Replication is Bidirectional

  21. Much of what we know about DNA synthesis was deduced from in vitro studies. DNA Polymerases and DNA Synthesis In Vitro

  22. Requirements of DNA Polymerases • Primer DNA with free 3'-OH • Template DNA to specify the sequence of the new strand • Substrates: dNTPs • Mg2+

  23. DNA Polymerase I

  24. DNA Polymerase I:5'3' Polymerase Activity

  25. DNA Polymerase I:5'3'Exonuclease Activity

  26. DNA Polymerase I:3'5' Exonuclease Activity

  27. DNA Polymerases • Polymerases in E. coli • DNA Replication: DNA Polymerases III and I • DNA Repair: DNA Polymerases II, IV, and V • Polymerases in Eukaryotes • Replication of Nuclear DNA: Polymerase  and/or  • Replication of Mitochondrial DNA: Polymerase  • DNA Repair: Polymerases and • All of these enzymes synthesize DNA 5' to 3' and require a free 3'-OH at the end of a primer

  28. Proofreading

  29. DNA Replication • Synthesis of the leading strand is continuous. • Synthesis of the lagging strand is discontinuous. The new DNA is synthesized in short segments (Okazaki fragment) that are later joined together.

  30. DNA Ligase Covalently Closes Nicks in DNA

  31. RNA Primers are Used to Initiate DNA Synthesis

  32. DNA Helicase Unwinds the Parental Double Helix

  33. Single-Strand DNA Binding (SSB) Protein

  34. DNA Topoisomerase I Produces Single-Strand Breaks in DNA

  35. The Replication Apparatus in E. coli

  36. The E. coli Replisome

  37. Ori C • Burbuja de replicacion • DNA A protein se pegan al repeat del core de 9 bb, se pegan entre 20 y 40 DNA A • se separan las cadenas se forma la burbuja • DNA B helicasa y DNA C se unen para formar el fork bidireccioinal • DNA T tambien de funcion desconcocida • Otras entre ellas la DNA girasa y las SSB • DNA primasa = RNA pol q hace primers (cadena leading un solo primer) • lagging primosoma = DNA primasa y DNA Helicasa • DNA pol III extiende • DNA topo provee los ejes de rotacion haciendo los nicks • SSB mantienen • DNA pol I reemplaza los primers de RNA • DNA ligasa unes los fragmentos de ocka • DNA girasa introdue el negative supercoil (DNA topoi)

  38. DNA Replication in Eukaryotes • Shorter RNA primers and Okazaki fragments • DNA replication only during S phase • Multiple origins of replication • Nucleosomes • Telomeres

  39. Bidirectional Replication from Multiple Origins in Eukaryotes

  40. The Eukaryotic Replisome

  41. Eukaryotic Replication Proteins • DNA polymerase -DNA primase—initiation; priming of Okazaki fragments • DNA polymerase —processive DNA synthesis • DNA polymerase —DNA replication and repair in vivo • PCNA (proliferating cell nuclear antigen)—sliding clamp • Replication factor-C Rf-C)—loading of PCNA • Ribonuclease H1 and Ribonuclease FEN-1—removal of RNA primers

  42. Disassembly and Assembly of Nucleosomes

  43. The Telomere Problem

  44. Telomerase

  45. Telomere Length and Aging • Most human somatic cells lack telomerase activity. • Shorter telomeres are associated with cellular senescence and death. • Diseases causing premature aging are associated with short telomeres.

  46. The Central Dogma

  47. Transcription and Translation in Prokaryotes • The primary transcript is equivalent to the mRNA molecule. • The mRNA codons on the mRNA are translated into an amino acid sequence by the ribosomes.

More Related